On the Picard number of Fano 3-folds with terminal singularities

To memory of Boris Moishezon

By

Viacheslav V. NIKULIN

Introduction

Here we continue investigations started in [N6], [N7].

Algebraic varieties we consider are defined over field ${f C}$ of complex numbers.

In this paper, we get a final result on estimating the Picard number $\rho = \dim N_1(X)$ of a Fano 3-fold X with terminal **Q**-factorial singularities if X does not have small extremal rays and its Mori polyhedron does not have faces with Kodaira dimension 1 or 2. One can consider this class as a generalization of the class of Fano 3-folds with Picard number 1. There are many non-singular Fano 3-folds satisfying this condition and with Picard number 2 (see [Mo-Mu] and also [Ma]). We also think that studying the Picard number of this calss may be important for studying Fano 3-folds with Picard number 1, too (see Corollary 2 below).

Let X be a Fano 3-fold with Q-factorial terminal singularities. Let R be an extremal ray of the Mori polyhedron $\overline{NE}(X)$ of X. We say that R has the *type*(I) (respectively (II)) if curves of R fill an irreducible divisor D(R) of X and the contraction of the ray R contracts the divisor D(R) to a point (respectively to a curve). An extremal ray R is called *small* if curves of this ray fill a curve on X.

A pair $\{R_1, R_2\}$ of extremal rays has the type \mathfrak{B}_2 if extremal rays R_1, R_2 are different, both have the type (II), and have the same divisor $D(R_1) = D(R_2)$.

We recall that a face γ of Mori polyhedron NE(X) defines a contraction $f_{\tau}: X \rightarrow X'$ (see [Ka1] and [Sh]) such that f(C) is a point for an irreducible curve C if and only if C belongs to γ . The dimX' is called the Kodaira dimension of the γ . A set \mathscr{E} of extremal rays is called extremal if it is contained in a face of Mori polyhedron.

Basic Theorem. Let X be a Fano 3-fold with terminal \mathbf{Q} -factorial sing-

Communicated by Prof. M. Maruyama, March 8, 1993, Revised March 20, 1994