Root lattices and pencils of varieties

By

H. A. Verrill

1. Introduction

In this paper a particular pencil of K3 surfaces is investigated. The PicardFuchs equation, solutions, and the monodromy group are found. The paper [21] gives the Picard-Fuchs equation for several families of elliptic curves. Similar methods are also used in [14] and [15] to obtain the Picard-Fuchs equation for the case of certain pencils of K3 surfaces. In these papers finding the PicardFuchs equation comes down to finding a recurrence relation for some sequence of combinatorially defined terms, e.g., in [5], recurrence relations are found for a_{n} in the following cases:

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}, \sum_{k=0}^{n}\binom{n}{k}^{3}, \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k} .
$$

In these examples, the symmetry of the defining equations of the varieties leads to the determination of the Picard-Fuchs equations from the combinatorial data. This gives motivation to try and find further examples, by considering other pencils of varieties with a good degree of symmetry.

The pencil of K3 surfaces in [15] is acted on by the Weyl group of the root lattice $A_{1} \times A_{1} \times A_{1}$, and the pencil can be viewed as being constructed from this lattice. This construction is described in section 2 , for a general root lattice.

In this paper, the $\dot{A_{3}}$ case is investigated. The corresponding pencil of K3 surfaces is denoted by $\mathscr{X}_{A 3}$.

To find the Picard-Fuchs equation for $\mathscr{X}_{A_{3}}$, one has to find a recurrence relation for

$$
a_{n}=\sum_{p+q+r+s=n}\binom{n}{p q r s}^{2},
$$

where $\binom{n}{p q r s}=\frac{n!}{p!q!r!s!}$.
The following result is obtained (cf. 4.3, Proposition 7):

[^0]
[^0]: Received July 31, 1995
 Revised February 5, 1996

