On a property of Nirenberg type operator

By

Haruki NINOMIYA

§1. Introduction

Let X be a nowhere-zero C^{∞} complex vector field in \mathbb{R}^n . Let $S^X = \{f \in C^{\infty}(\mathbb{R}^n); Xu = f \text{ has a } C^1 \text{ solution near the origin.}\}$ and $S_X = \{f \in C^{\infty}(\mathbb{R}^n); Xu = f \text{ has a } C^1 \text{ solution near the origin such that } du(0) \neq 0\}$. The following facts are classically well known:

(1) $\mathscr{A} \subset S_X$ if X is real-analytic, where \mathscr{A} denotes the set of real-analytic functions in \mathbb{R}^n .

(2) $S_X = C^{\infty}(\mathbb{R}^2)$ if n = 2, and X(0), $\overline{X}(0)$ are C-linearly independent (In this case, X is an elliptic operator).

And we can easily obtain the following fact owing to Hölmander [1] and Treves [4]:

(3) $S_X = C^{\infty}(\mathbb{R}^n)$ if X is a solvable operator at the origin.

Though it is trivial, we also know the following fact:

(4) $\mathscr{A} \subset S_X \subsetneq C^{\infty}(\mathbb{R}^n)$ if X is a non-solvable operator at the origin and realanalytic.

We thus see $S_X = S^X$ in each case of the above. Does there exist a nonsolvable vector field X such that $S_X \subseteq S^X$?

This paper aims at showing that the answer is "Yes". We shall give such vector fields L_{α} , which we call Nirenberg type:

Let $\alpha(t, x)$ be a real-valued $C^{\infty}(\mathbb{R}^2)$ function satisfying the following conditions:

(A.1) $\alpha(t, x) \ge 0$ in a neighborhood ω of the origin.

(A.2) There exist positive constants c, d, and a monotonously increasing sequence $\{p_n\}$ of positive integers such that

$$\iint_{D(p_k)} \alpha(t, x) \, \mathrm{d}t \mathrm{d}x > \frac{9}{(p_k + d)(p_k + c)}$$

for every sufficiently large k, where $D(p_k) = \left(0, \frac{1}{p_k}\right) \times \left(0, \frac{1}{p_k}\right)$.

We shall define L_{α} in the following manner:

$$L_{\alpha}=\partial_t+i(2t+\alpha)\partial_x.$$

Then we assert the following

Communicated by Prof. K. Ueno, November 1997