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1. Introduction

The relativistic Euler equation f o r  a  perfect fluid in  two dimensional
Minkowski space-time has the form ([9], [10])
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Here y = y(x, t )  is the classical coordinate velocity, p  = p (x ,t)  is the mass-energy
density of the fluid, p  = p (p )  is the pressure and c  is the speed of light. On the
other hand, the non-relativistic Euler equation is
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For the systems (1.1) and (1.2), the local existence theorems are known for the
smooth solutions (see [4] and [5] for the full-dimensional case). Also, the global
existence theorems are established for the one-dimensional isentropic motions
p = pY  , y >  1  ([11 and [7]). In the case of the isothermal motions p = 0 -

2 p, where
the sound speed c  is assumed to be the constant, the existence theorems with
arbitrary initial data have been obtained both for (1.1) and (1.2), by J. Smoller and
B. Temple [9] and by T. Nishida [6] respectively.

In physics, it is well-known that the classical mechanics reappears as the limit
of the relativistic mechanics when c —> oo , and in particular, it is easy to check that
the relativistic Euler equation (1.1) reduces formally to the non-relativistic Euler
equation (1.2) when c cc. However, until now there are only local results for
the limit of smooth solutions of the relativistic Euler equation ([5]). The aim of
this paper is to discuss the convergence of weak solutions of (1.1) as c —> c o . Since
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