A necessary and sufficient condition of local integrability

By
Haruki Ninomiya

§ 1. Introduction

Let X_{n} be a nowhere-zero C^{∞} complex vector field defined near a point P in \mathbf{R}^{n}. We shall say that X_{n} is locally integrable at P if the equation $X_{n} u=0$ has C^{1} solutions $u_{1}, u_{2}, \ldots, u_{n-1}$ near P such that $d u_{1} \wedge d u_{2} \wedge \cdots \wedge d u_{n-1}(\mathrm{P}) \neq 0$ (see [3], [4], [5], and [12]).

Generally, the following is known: X_{n} is locally integrable at P if X_{n} is realanalytic or locally solvable at P (see [14], for instance) but there exist non-solvable vector fields which have no local integrability (due to Nirenberg [9]).

In this article we are concerned with the case where $n=2$.
The equation $X_{2} u=0$ near P can be transformed into that of the form

$$
L u \equiv\left(\partial_{t}+i a(t, x) \partial_{x}\right) u=0
$$

near the origin in \mathbf{R}^{2}, where $a(t, x)$ is a real-valued C^{∞} function.
Though there are several partial results ([7], [8], [10], [11], [12], [13], [14] for instance), the problem is open to get a necessary and sufficient condition for $L u=$ 0 to have a solution near the origin such that $\partial_{x} u \neq 0$:

Suppose that $a(t, x)$ is real-analytic with respect to x. Then the equation $L u=0$ has such a solution by the existence theorem of Cauchy-KovalevskayaNagumo.

So let $a(t, x)$ be not real-analytic with respect to x. In the case where the function $t \rightarrow a(t, x)$ does not change sign in $\{t ;(t, x) \in \mathcal{O}\}$ for every x by taking a neighborhood \mathcal{O} of the origin, we see that the equation $L v=-i a_{x}(t, x)$ has a C^{∞} solution v near the origin by the local solvability of L; thus we find that the function

$$
\int_{0}^{t}-i a(\xi, x) \exp \{v(\xi, x)\} \mathrm{d} \xi+\int_{0}^{x} \exp \{v(0, \eta)\} \mathrm{d} \eta
$$

is one of the solutions satisfying the equation $L u=0$ with $\partial_{x} u \neq 0$ near the origin.
In the last case where the function $t \rightarrow a(t, x)$ changes sign in $\{t ;(t, x) \in \mathcal{O}\}$ for some x by taking any small neighborhood \mathcal{O} of the origin, there exists an example

