KO-theory of complex Stiefel manifolds

By

Daisuke KISHIMOTO

1. Introduction

The purpose of this paper is to determine the KO^* -group of the complex Stiefel manifold $V_{n,q}$ which is q-frames in \mathbb{C}^n . We compute it by making use of the Atiyah-Hirzebruch spectral sequence of $KO^*(V_{n,q})$ and obtain the following:

Theorem. Let a_k , b_k and c_k be as follows, then we have

$$KO^{-i}(V_{n,q}) \cong a_k \mathbf{Z} \oplus c_k \mathbf{Z}_2$$

for n = 2k, $q \le 4$ and n = 2k + 1, $q \le 3$, and

$$KO^{-i}(V_{n,q}) \cong KO^{-i-4}(V_{n,q}) \cong a_k \mathbf{Z} \oplus b_k \mathbf{Z}_2$$

for otherwise.

q	a_0	a_{-1}	a_{-2}	a_{-3}	
2l	$2^{2l-2} + 2^{l-1}$	2^{2l-2}	$2^{2l-2} - 2^{l-1}$	2^{2l-2}	
2l + 1	$2^{2l-2} + 2^{l-1}$	$2^{2l-2} - (-1)^n 2^{l-1}$	$2^{2l-2} - 2^{l-1}$	$2^{2l-2} + (-1)^n 2^{l-1}$	

(n,q)	b_0	b_{-1}	b_{-2}	b_{-3}
(2k, 2l)	2^{q-4}	$3 \cdot 2^{q-4}$	$3 \cdot 2^{q-4}$	2^{q-4}
(2k, 2l + 1)	0	2^{q-3}	2^{q-2}	2^{q-3}
(2k + 1, 2l)	0	2^{q-2}	2^{q-2}	0
(2k+1, 2l+1)	2^{q-3}	2^{q-2}	2^{q-3}	0

Received June 24, 2004