Illinois Journal of Mathematics Volume 49, Number 4, Winter 2005, Pages 1299–1321 S 0019-2082

ON TORSION-FREE GROUPS IN O-MINIMAL STRUCTURES

YA'ACOV PETERZIL AND SERGEI STARCHENKO

ABSTRACT. We consider groups definable in the structure \mathbb{R}_{an} and certain o-minimal expansions of it. We prove: If $\mathbb{G} = \langle G, * \rangle$ is a definable abelian torsion-free group, then \mathbb{G} is definably isomorphic to a direct sum of $\langle \mathbb{R}, + \rangle^k$ and $\langle \mathbb{R}^{>0}, \cdot \rangle^m$, for some $k, m \ge 0$. Futhermore, this isomorphism is definable in the structure $\langle \mathbb{R}, +, \cdot, \mathbb{G} \rangle$. In particular, if \mathbb{G} is semialgebraic, then the isomorphism is semialgebraic.

We show how to use the above result to give an "o-minimal proof" to the classical Chevalley theorem for abelian algebraic groups over algebraically closed fields of characteristic zero.

We also prove: Let \mathcal{M} be an arbitrary o-minimal expansion of a real closed field R and \mathbb{G} a definable group of dimension n. The group \mathbb{G} is torsion-free if and only if \mathbb{G} , as a definable group-manifold, is definably diffeomorphic to \mathbb{R}^n .

1. Introduction

Throughout this paper we fix an o-minimal expansion \mathcal{M} of a real closed field $R = \langle R, +, \cdot, 0, 1, < \rangle$. By "definable" we always mean definable in \mathcal{M} .

It is well-known that every abelian connected real Lie group is Lie isomorphic to a direct sum of copies of \mathbb{R}_a and the circle group S^1 (see, for example, [2]). Here and everywhere below for a real closed field R we will denote by R_a its additive group $\langle R, +, 0 \rangle$, and by R_m the multiplicative group of positive elements $\langle R^{>0}, \cdot, 1 \rangle$.

From a model-theoretical point of view it is natural to ask whether or not this kind of decomposition holds in the category of groups definable in the o-minimal structure \mathcal{M} .

In general, the answer to the above question is negative. There are at least two obstacles. First, in the polynomial bounded case, the multiplicative group R_m is not definably isomorphic to the additive group of R_a , and one should at least allow also copies of the multiplicative group.

©2005 University of Illinois

Received May 18, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 03C64, 14P15, 14P10, 14L99.