ON TORSION-FREE GROUPS IN O-MINIMAL STRUCTURES

YA'ACOV PETERZIL AND SERGEI STARCHENKO

Abstract

We consider groups definable in the structure $\mathbb{R}_{a n}$ and certain o-minimal expansions of it. We prove: If $\mathbb{G}=\langle G, *\rangle$ is a definable abelian torsion-free group, then \mathbb{G} is definably isomorphic to a direct sum of $\langle\mathbb{R},+\rangle^{k}$ and $\left\langle\mathbb{R}^{>0}, \cdot\right\rangle^{m}$, for some $k, m \geqslant 0$. Futhermore, this isomorphism is definable in the structure $\langle\mathbb{R},+, \cdot, \mathbb{G}\rangle$. In particular, if \mathbb{G} is semialgebraic, then the isomorphism is semialgebraic.

We show how to use the above result to give an "o-minimal proof" to the classical Chevalley theorem for abelian algebraic groups over algebraically closed fields of characteristic zero.

We also prove: Let \mathcal{M} be an arbitrary o-minimal expansion of a real closed field R and \mathbb{G} a definable group of dimension n. The group \mathbb{G} is torsion-free if and only if \mathbb{G}, as a definable group-manifold, is definably diffeomorphic to R^{n}.

1. Introduction

Throughout this paper we fix an o-minimal expansion \mathcal{M} of a real closed field $R=\langle R,+, \cdot, 0,1,<\rangle$. By "definable" we always mean definable in \mathcal{M}.

It is well-known that every abelian connected real Lie group is Lie isomorphic to a direct sum of copies of \mathbb{R}_{a} and the circle group S^{1} (see, for example, [2]). Here and everywhere below for a real closed field R we will denote by R_{a} its additive group $\langle R,+, 0\rangle$, and by R_{m} the multiplicative group of positive elements $\left\langle R^{>0}, \cdot, 1\right\rangle$.

From a model-theoretical point of view it is natural to ask whether or not this kind of decomposition holds in the category of groups definable in the o-minimal structure \mathcal{M}.

In general, the answer to the above question is negative. There are at least two obstacles. First, in the polynomial bounded case, the multiplicative group R_{m} is not definably isomorphic to the additive group of R_{a}, and one should at least allow also copies of the multiplicative group.

[^0]
[^0]: Received May 18, 2005.
 2000 Mathematics Subject Classification. 03C64, 14P15, 14P10, 14L99.

