CONTRACTIVE AND COMPLETELY CONTRACTIVE HOMOMORPHISMS OF PLANAR ALGEBRAS

TIRTHANKAR BHATTACHARYYA AND GADADHAR MISRA

Abstract

We consider contractive homomorphisms of a planar algebra $\mathcal{A}(\Omega)$ over a finitely connected bounded domain $\Omega \subseteq \mathbb{C}$ and ask if they are necessarily completely contractive. We show that a homomor$\operatorname{phism} \rho: \mathcal{A}(\Omega) \rightarrow \mathcal{B}(\mathcal{H})$ for which $\operatorname{dim}(\mathcal{A}(\Omega) / \operatorname{ker} \rho)=2$ is the direct integral of homomorphisms ρ_{T} induced by operators on two-dimensional Hilbert spaces via a suitable functional calculus $\rho_{T}: f \mapsto f(T), f \in$ $\mathcal{A}(\Omega)$. It is well known that contractive homomorphisms ρ_{T} induced by a linear transformation $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ are necessarily completely contractive. Consequently, using Arveson's dilation theorem for completely contractive homomorphisms, one concludes that such a homomorphism ρ_{T} possesses a dilation. In this paper, we construct this dilation explicitly. In view of recent examples discovered by Dritschel and McCullough, we know that not all contractive homomorphisms ρ_{T} are completely contractive even if T is a linear transformation on a finite-dimensional Hilbert space. We show that one may be able to produce an example of a contractive homomorphism ρ_{T} of $\mathcal{A}(\Omega)$ which is not completely contractive if an operator space which is naturally associated with the problem is not the MAX space. Finally, within a certain special class of contractive homomorphisms ρ_{T} of the planar algebra $\mathcal{A}(\Omega)$, we construct a dilation.

1. Introduction

All our Hilbert spaces are over complex numbers and are assumed to be separable. Let $T \in \mathcal{B}(\mathcal{H})$, the algebra of bounded operators on \mathcal{H}. The operator T induces a homomorphism $\rho_{T}: p \mapsto p(T)$, where p is a polynomial. Equip the polynomial ring with the supremum norm on the unit disc, that is, $\|p\|=\sup \{|p(z)|: z \in \mathbb{D}\}$. A well-known inequality due to von Neumann (cf. [18]) asserts that ρ_{T} is contractive, that is, $\left\|\rho_{T}\right\| \leq 1$, if and only if the operator

[^0]
[^0]: Received April 20, 2005; received in final form August 1, 2005.
 2000 Mathematics Subject Classification. Primary 46J10. Secondary 47A20.
 The first named author acknowledges the support from Department of Science and Technology, India, Grant \# SR/ FTP/ MS-16/ 2001. The second named author acknowledges the support from the Indo-French Centre for the Promotion of Advanced Research, Grant \# IFC/2301-C/99/2396.

