Illinois Journal of Mathematics Volume 49, Number 4, Winter 2005, Pages 1181–1201 S 0019-2082

CONTRACTIVE AND COMPLETELY CONTRACTIVE HOMOMORPHISMS OF PLANAR ALGEBRAS

TIRTHANKAR BHATTACHARYYA AND GADADHAR MISRA

ABSTRACT. We consider contractive homomorphisms of a planar algebra $\mathcal{A}(\Omega)$ over a finitely connected bounded domain $\Omega \subset \mathbb{C}$ and ask if they are necessarily completely contractive. We show that a homomorphism $\rho : \mathcal{A}(\Omega) \to \mathcal{B}(\mathcal{H})$ for which $\dim(\mathcal{A}(\Omega)/\ker\rho) = 2$ is the direct integral of homomorphisms ρ_T induced by operators on two-dimensional Hilbert spaces via a suitable functional calculus $\rho_T : f \mapsto f(T), f \in$ $\mathcal{A}(\Omega)$. It is well known that contractive homomorphisms ρ_T induced by a linear transformation $T: \mathbb{C}^2 \to \mathbb{C}^2$ are necessarily completely contractive. Consequently, using Arveson's dilation theorem for completely contractive homomorphisms, one concludes that such a homomorphism ρ_T possesses a dilation. In this paper, we construct this dilation explicitly. In view of recent examples discovered by Dritschel and McCullough, we know that not all contractive homomorphisms ρ_T are completely contractive even if T is a linear transformation on a finite-dimensional Hilbert space. We show that one may be able to produce an example of a contractive homomorphism ρ_T of $\mathcal{A}(\Omega)$ which is not completely contractive if an operator space which is naturally associated with the problem is not the MAX space. Finally, within a certain special class of contractive homomorphisms ρ_T of the planar algebra $\mathcal{A}(\Omega)$, we construct a dilation.

1. Introduction

All our Hilbert spaces are over complex numbers and are assumed to be separable. Let $T \in \mathcal{B}(\mathcal{H})$, the algebra of bounded operators on \mathcal{H} . The operator T induces a homomorphism $\rho_T : p \mapsto p(T)$, where p is a polynomial. Equip the polynomial ring with the supremum norm on the unit disc, that is, $\|p\| = \sup\{|p(z)| : z \in \mathbb{D}\}$. A well-known inequality due to von Neumann (cf. [18]) asserts that ρ_T is contractive, that is, $\|\rho_T\| \leq 1$, if and only if the operator

©2005 University of Illinois

Received April 20, 2005; received in final form August 1, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46J10. Secondary 47A20.

The first named author acknowledges the support from Department of Science and Technology, India, Grant # SR/ FTP/ MS-16/ 2001. The second named author acknowledges the support from the Indo-French Centre for the Promotion of Advanced Research, Grant # IFC/2301-C/99/2396.