EXTENSION OF UNITARY OPERATORS

BY

CARL E. LINDERHOLM

Let (X, \mathfrak{M}, μ) be a measure space; the space (X, \mathfrak{M}, μ) will ordinarily be written X. A measure-preserving transformation on X is a function T whose domain is X, and whose range is a subset of X, such that if E is a measurable set of X then $T^{-1}E$ is measurable and $\mu(T^{-1}E) = \mu(E)$. Let T be a measurepreserving transformation on X. If there exists a measure-preserving transformation S on X such that ST(x) = TS(x) = x a.e. then T is *invertible*.

Let T be an invertible measure-preserving transformation on X. It is well known that if $f \in \mathcal{L}^2(X)$ then $fT \in \mathcal{L}^2(X)$ and that the correspondence $f \to fT$ is a unitary operator on $\mathcal{L}^2(X)$. This is called the unitary operator induced by T.

The following theorem is due to Kakutani [5].

THEOREM. Let U be a unitary operator on a separable Hilbert space 5C. Then there exists a measure space (X, \mathfrak{M}, μ) isomorphic to the space of the interval [0, 1) with Lebesgue measure, a measure-preserving transformation T on X, and a subspace \mathfrak{K} of $\mathfrak{L}^2(X)$ invariant under the unitary operator U_T induced by T, such that the restriction of U_T to \mathfrak{K} is unitarily equivalent to U.

Remark. Kakutani's proof involves a non-trivial argument based on properties of Gauss functions. Some of the details were not published in [5]. The proof presented here has a more elementary approach, although it does not develop the facts as completely as Kakutani's does.

Proof. The proof is based on a form of the spectral theorem for unitary operators. If (Y, \mathfrak{N}, ν) is a measure space and φ is a complex-valued measurable function on Y such that $|\varphi(y)| = 1$ for every point y of Y, then for every function f in $\mathfrak{L}^2(Y)$ the product $\varphi f \in \mathfrak{L}^2(Y)$, and the mapping

 $V: f \to \varphi f$

is a unitary operator on $\mathfrak{L}^2(Y)$. By a certain form of the spectral theorem [2, pp. 911-912], [3] there exist a space Y and a function φ such that the operator V is unitarily equivalent to U. We therefore replace U and \mathfrak{K} by V and $\mathfrak{L}^2(Y)$. Moreover, in case U has no proper values we may take Y to be normal in the sense of [4]; in case the proper vectors of U span \mathfrak{K} then Y may be taken to be a countable set and we may assume that $\nu(Y) = 1$ and if $y \in Y$ then $\{y\} \in \mathfrak{M}$ and $\nu\{y\} > 0$; and if neither of these holds then we may take Y to be the normalized union of two such spaces as occur in the first two cases.

Let $(C, \mathfrak{C}, \gamma)$ be the normalized measure space of the unit circle $\{z : |z| = 1\}$

Received February 5, 1964.