ON OPTIMAL STOPPING RULES FOR s_n/n

ВY

Y. S. CHOW AND HERBERT ROBBINS

1. Introduction

Let

$$(1) x_1, x_2, \cdots$$

be a sequence of independent, identically distributed random variables on a probability space $(\Omega, \mathfrak{F}, P)$ with

(2)
$$P(x_1 = 1) = P(x_1 = -1) = \frac{1}{2},$$

and let $s_n = x_1 + \cdots + x_n$. Let $i = 0, \pm 1, \cdots$ and $j = 0, 1, \cdots$ be two fixed integers. Assume that we observe the sequence (1) term by term and can decide to stop at any point; if we stop with x_n we receive the reward $(i + s_n)/(j + n)$. What stopping rule will maximize our expected reward?

Formally, a stopping rule t of (1) is any positive integer-valued random variable such that the event $\{t = n\}$ is in \mathfrak{F}_n $(n \ge 1)$ where \mathfrak{F}_n is the Borel field generated by x_1, \dots, x_n . Let T denote the class of all stopping rules; for any t in T, s_t is a well-defined random variable, and we set

(3)
$$v_j(i \mid t) = E\left(\frac{i+s_t}{j+t}\right), \quad v_j(i) = \sup_{t \in T} v_j(i \mid t).$$

It is by no means obvious that for given i and j there exists a stopping rule $\Im_j(i)$ in T such that

(4)
$$v_j(i \mid 3_j(i)) = v_j(i) = \max_{i \in T} v_j(i \mid t);$$

such a stopping rule of (1) will be called optimal for the reward sequence

(5)
$$\frac{i+s_1}{j+1}, \qquad \frac{i+s_2}{j+2}, \cdots$$

Theorem 1 below asserts that for every $i = 0, \pm 1, \cdots$ and $j = 0, 1, \cdots$ there exists an optimal stopping rule $\mathfrak{I}_j(i)$ for the reward sequence (5).

We remark that for any t in T and any $i = 0, \pm 1, \cdots$ and $j = 0, 1, \cdots$ the random variable

$$t' = t \qquad \qquad \text{if} \quad i + s_t \ge 1,$$

 $= \text{ first } n > t \text{ such that } i + s_n = 1 \quad \text{if } i + s_t \le 0$

is in T and

(7)
$$i + s_{t'} \ge 1, \quad 0 < E\left(\frac{i + s_{t'}}{j + t'}\right) \ge E\left(\frac{i + s_t}{j + t}\right).$$

Received February 4, 1964.