ON OPTIMAL STOPPING RULES FOR s_{n} / n

BY
Y. S. Chow and Herbert Robbins

1. Introduction

Let

$$
\begin{equation*}
x_{1}, x_{2}, \cdots \tag{1}
\end{equation*}
$$

be a sequence of independent, identically distributed random variables on a probability space (Ω, \mathcal{F}, P) with

$$
\begin{equation*}
P\left(x_{1}=1\right)=P\left(x_{1}=-1\right)=\frac{1}{2} \tag{2}
\end{equation*}
$$

and let $s_{n}=x_{1}+\cdots+x_{n}$. Let $i=0, \pm 1, \cdots$ and $j=0,1, \cdots$ be two fixed integers. Assume that we observe the sequence (1) term by term and can decide to stop at any point; if we stop with x_{n} we receive the reward $\left(i+s_{n}\right) /(j+n)$. What stopping rule will maximize our expected reward?

Formally, a stopping rule t of (1) is any positive integer-valued random variable such that the event $\{t=n\}$ is in $\mathfrak{F}_{n}(n \geq 1)$ where \mathfrak{F}_{n} is the Borel field generated by x_{1}, \cdots, x_{n}. Let T denote the class of all stopping rules; for any t in T, s_{t} is a well-defined random variable, and we set

$$
\begin{equation*}
v_{j}(i \mid t)=E\left(\frac{i+s_{t}}{j+t}\right), \quad v_{j}(i)=\sup _{t \in T} v_{j}(i \mid t) \tag{3}
\end{equation*}
$$

It is by no means obvious that for given i and j there exists a stopping rule $\mathfrak{J}_{j}(i)$ in T such that

$$
\begin{equation*}
v_{j}\left(i \mid \zeta_{j}(i)\right)=v_{j}(i)=\max _{t \in T} v_{j}(i \mid t) \tag{4}
\end{equation*}
$$

such a stopping rule of (1) will be called optimal for the reward sequence

$$
\begin{equation*}
\frac{i+s_{1}}{j+1}, \quad \frac{i+s_{2}}{j+2}, \cdots \tag{5}
\end{equation*}
$$

Theorem 1 below asserts that for every $i=0, \pm 1, \cdots$ and $j=0,1, \cdots$ there exists an optimal stopping rule $J_{j}(i)$ for the reward sequence (5).

We remark that for any t in T and any $i=0, \pm 1, \cdots$ and $j=0,1, \cdots$ the random variable

$$
\begin{array}{rlrl}
t^{\prime} & =t & & \text { if } i+s_{t} \geq 1 \tag{6}\\
& =\text { first } n>t \text { such that } i+s_{n}=1 & \text { if } i+s_{t} \leq 0
\end{array}
$$

is in T and

$$
\begin{equation*}
i+s_{t^{\prime}} \geq 1, \quad 0<E\left(\frac{i+s_{t^{\prime}}}{j+t^{\prime}}\right) \geq E\left(\frac{i+s_{t}}{j+t}\right) \tag{7}
\end{equation*}
$$

[^0]
[^0]: Received February 4, 1964.

