ADJOINT FUNCTORS AND TRIPLES¹

BY

Samuel Eilenberg and John C. Moore

A triple $\mathbf{F}=(F, \eta, \mu)$ in a category \mathbb{Q} consists of a functor $F: \mathbb{Q} \rightarrow \mathbb{Q}$ and morphisms $\eta: 1_{a} \rightarrow F, \mu: F^{2} \rightarrow F$ satisfying some identities (see §2, (T.1)(T.3)) analogous to those satisfied in a monoid. Cotriples are defined dually.

It has been recognized by Huber [4] that whenever one has a pair of adjoint functors $T: \mathbb{Q} \rightarrow \mathfrak{B}, S: \mathbb{B} \rightarrow \mathfrak{Q}$ (see $\S 1$), then the functor $T S$ (with appropriate morphisms resulting from the adjointness relation) constitutes a triple in B and similarly $S T$ yields a cotriple in \mathbb{Q}.

The main objective of this paper is to show that this relation between adjointness and triples is in some sense reversible. Given a triple \mathbf{F} in \mathbb{Q} we define a new category \mathfrak{a}^{F} and adjoint functors $T: \mathfrak{Q}^{F} \rightarrow \mathfrak{a}, S: \mathfrak{a} \rightarrow \mathfrak{a}^{F}$ such that the triple given by $T S$ coincides with F. There may be many adjoint pairs which in this way generate the triple \mathbf{F}, but among those there is a universal one (which therefore is in a sense the "best possible one") and for this one the functor T is faithful (Theorem 2.2). This construction can best be illustrated by an example. Let \mathfrak{Q} be the category of modules over a commutative ring K and let Λ be a K-algebra. The functor $F=\Lambda \otimes$ together with morphisms η and μ resulting from the morphisms $K \rightarrow \Lambda, \Lambda \otimes \Lambda \rightarrow \Lambda$ given by the K-algebra structure of Λ, yield then a triple \mathbf{F} in Q. The category α^{F} is then precisely the category of Λ-modules. The general construction of \mathfrak{a}^{F} closely resembles this example. As another example, let \mathbb{Q} be the category of sets and let F be the functor which to each set A assigns the underlying set of the free group generated by A. There results a triple \mathbf{F} in \mathbb{Q} and \mathbb{Q}^{F} is the category of groups.

Let $\mathbf{G}=(\delta, \varepsilon, G)$ be a cotriple in a category A. It has been recognized by Godement [3] and Huber [4], that the iterates G^{n} of G together with face and degeneracy morphisms

$$
G^{n+1} \rightarrow G^{n}, \quad G^{n} \rightarrow G^{n+1}
$$

defined using ε and δ yield a simplicial structure which can be used to define homology and cohomology.

Now if F is a triple in \mathfrak{a}, then one has an adjoint pair $T: \mathbb{Q}^{F} \rightarrow \mathfrak{Q}$, $S: \mathbb{Q} \rightarrow \mathfrak{Q}^{F}$ and therefore one has an associated cotriple \mathbf{G} in \mathbb{Q}^{F}. This in turn yields a simplicial complex for every object in \mathbb{Q}^{F}, thus paving the way for homology and cohomology in \mathbb{Q}^{F}. In $\S 4$ we show that under suitable

[^0]
[^0]: Received April 30, 1964.
 ${ }^{1}$ The first author was partially supported by a contract from the Office of Naval Research and by a grant from the National Science Foundation while the second author was partially supported by an Air Force contract.

