ADJOINT FUNCTORS AND TRIPLES1

 \mathbf{BY}

SAMUEL EILENBERG AND JOHN C. MOORE

A triple $\mathbf{F} = (F, \eta, \mu)$ in a category α consists of a functor $F : \alpha \to \alpha$ and morphisms $\eta : 1_{\alpha} \to F$, $\mu : F^2 \to F$ satisfying some identities (see §2, (T.1)–(T.3)) analogous to those satisfied in a monoid. Cotriples are defined dually.

It has been recognized by Huber [4] that whenever one has a pair of adjoint functors $T: \alpha \to \alpha$, $S: \alpha \to \alpha$ (see §1), then the functor TS (with appropriate morphisms resulting from the adjointness relation) constitutes a triple in α and similarly ST yields a cotriple in α .

The main objective of this paper is to show that this relation between adjointness and triples is in some sense reversible. Given a triple F in a we define a new category α^F and adjoint functors $T: \alpha^F \to \alpha, S: \alpha \to \alpha^F$ such that the triple given by TS coincides with F. There may be many adjoint pairs which in this way generate the triple F, but among those there is a universal one (which therefore is in a sense the "best possible one") and for this one the functor T is faithful (Theorem 2.2). This construction can best be illustrated by an example. Let a be the category of modules over a commutative ring K and let Λ be a K-algebra. The functor $F = \Lambda \otimes$ together with morphisms η and μ resulting from the morphisms $K \to \Lambda$, $\Lambda \otimes \Lambda \to \Lambda$ given by the K-algebra structure of Λ , yield then a triple **F** in α . The category α^F is then precisely the category of Λ -modules. The general construction of a closely resembles this example. As another example, let a be the category of sets and let F be the functor which to each set A assigns the underlying set of the free group generated by A. There results a triple F in α and α^F is the category of groups.

Let $G = (\delta, \varepsilon, G)$ be a cotriple in a category A. It has been recognized by Godement [3] and Huber [4], that the iterates G^n of G together with face and degeneracy morphisms

$$G^{n+1} \to G^n$$
, $G^n \to G^{n+1}$

defined using ε and δ yield a simplicial structure which can be used to define homology and cohomology.

Now if **F** is a triple in \mathfrak{A} , then one has an adjoint pair $T:\mathfrak{A}^F \to \mathfrak{A}$, $S:\mathfrak{A} \to \mathfrak{A}^F$ and therefore one has an associated cotriple **G** in \mathfrak{A}^F . This in turn yields a simplicial complex for every object in \mathfrak{A}^F , thus paving the way for homology and cohomology in \mathfrak{A}^F . In §4 we show that under suitable

Received April 30, 1964.

¹ The first author was partially supported by a contract from the Office of Naval Research and by a grant from the National Science Foundation while the second author was partially supported by an Air Force contract.