PERIODIC TRANSFORMATIONS OF 3-MANIFOLDS¹

BY

P. A. Smith

1. M will denote a triangulated 3-manifold, G a finite group, (G, M) an effective simplicial action, orientation-preserving whenever M is orientable. Concerning the action we assume that (1) for every $g \in G$, the fixedpoint set F = F(g) is a subcomplex of M; (2) the natural cell structure of the orbit space $\mathfrak{M} = M/G$ and the projection $\phi : M \to \mathfrak{M}$ are simplicial and (3) ϕ maps each simplex homeomorphically and (4) if σ , σ' are oriented simplexes of M, then $\phi\sigma = \phi\sigma'$ implies $\sigma' = g\sigma$ for some $g \in G$.

From the piecewise linear point of view, these conditions are not restrictive. In fact if (G, M) is simplicial, there is an induced action (G, M_1) , M_1 a simplicial subdivision of M, which satisfies (1). If (G, M) satisfies (1), it is a straightforward exercise to show that the induced action (G, M''), where M'' is the second barycentric subdivision, satisfies (1), (2), (3), (4).

We shall assume from here on that $G = Z_p$, $p \ge 2$ and F = F(G) is a simple closed curve. From condition (1), F is a polygon, subcomplex of M.

Moise [1] proved

THEOREM 1. If M is homeomorphic to a euclidean 3-sphere there exists a compact orientable polyhedral 2-manifold Y in M (i.e. piecewise linearly imbedded in M) such that² $\partial Y = F$ and such that the p images of Y - F are disjoint.

Moise showed further that if F is unknotted in the 3-sphere M, then (G, M) is equivalent to a rotation. It is sufficient to prove

THEOREM 2. If M is homeomorphic to a euclidean 3-sphere and F is unknotted, there exists a manifold Y which has the properties stated in Theorem 1 and is a disc.

The proof of Theorem 1 in [1] employs a number of special technical devices. We give here an alternative proof which seems shorter and more direct. The same proof in conjunction with Dehn's lemma gives Theorem 2. Theorem 1 will be proved essentially by producing a 2-manifold \mathfrak{C} in M/G such that $\partial \mathfrak{C} = \mathfrak{F}(=\phi F)$. The required 2-manifold in M is the union of F and a component of $\phi^{-1}(\mathfrak{C} - \mathfrak{C} \cap \mathfrak{F})$.

If M is oriented and without boundary, and if the induced action (G, M - F) is free, then $\mathfrak{M} = M/G$ is an oriented manifold without boundary. For let x be a vertex of M, $\kappa = \phi x$, $W_x = \operatorname{St}(x, M)$ (= star of x in M). Since $\phi \mid M - F$ is a local homeomorphism, one sees that if $x \in M - F$, ϕ maps W_x

Received January 17, 1964.

¹ This work has been supported by the Office of Naval Research.

² ∂X denotes the boundary of X in the sense of manifold theory. If X is oriented, so is ∂X .