THE SPACE OF HOMEOMORPHISMS ON A TORUS¹

BY
Mary-Elizabeth Hamstrom

There have been several recent results concerning homotopy properties of the space of homeomorphisms on a manifold. Most of these properties have been local. In [4], Eldon Dyer and I proved that the space of homeomorphisms on a 2-manifold is locally contractible and in [5] and [6] it is proved that the space of homeomorphisms on a 3-manifold is locally homotopy connected in all dimensions. Global properties appear to be more difficult. A well known result of Alexander's [1] states that the space of homeomorphisms on an n-cell leaving its boundary pointwise fixed is contractible and locally contractible. In a recent paper [7] it is proved that the identity component of the space of homeomorphisms on a dise with holes leaving its boundary pointwise fixed is homotopically trivial. In the present paper, the identity component of the space of homeomorphisms on a torus is considered and it is proved that its homotopy groups are the same as those for the torus. For related results, see [2], [11], [12], and [13].

Theorem 1. If k is an integer greater than 1, then the identity component of the space H of homeomorphisms of a torus T onto itself has the property that $\pi_{k}(H)=0$.

Proof. Let C denote a meridian simple closed curve on T and P a point of C. A covering space of T is $C \times E^{1}$, where E^{1} is the real line and the covering map π is such that $\pi(x, 0)=x$ for each x in C and, in general, $\pi(x, t)=\pi\left(y, t^{\prime}\right)$ if and only if $x=y$ and $t-t^{\prime}$ is an integer. If n is a non-negative integer, S^{n} denotes an n-sphere and will be considered as the boundary of the $(n+1)$-cell, R^{n+1}.

Let F denote a mapping of S^{k} into H and g the mapping of S^{k} into T defined by $g(x)=F(x)(P)$. There exists a mapping G of S^{k} into $C \times E^{1}$ such that $\pi G(x)=g(x)$ and for each x in S^{k}, there is a unique mapping $f(x)$ of C into $C \times E^{1}$ such that $f(x)(P)=G(x)$ and for y in $C, \pi f(x)(y)=F(x)(y)$. The existence of G is a consequence of the various lifting properties of fiber spaces. (See [10, p. 63, Th 3.1.].) To see that $F(x) \mid C$ can be lifted, note that $F(x) \mid C$ is homotopic to the identity in T, since F is in the identity component of H. In particular, there is a mapping φ of $C \times I$ into T such that $\varphi \mid C \times 0$ is a homeomorphism onto a meridian of $T, \varphi \mid C \times 1=F(x)$ and $\varphi(P, t)=g(x)$. (See Lemma A.) Since $C \times 0$ is a strong deformation retract of $C \times I$ and there is clearly a mapping $\tilde{\varphi}$ of $C \times 0$ into $C \times E^{1}$ such

[^0]
[^0]: Received September 19, 1963.
 ${ }^{1}$ Presented to the American Mathematical Society April 29, 1963. This work was supported in part by the National Science Foundation.

