ON A PROBLEM OF STÖRMER

BY
D. H. Lehmer
\section*{1. Introduction}

Let $q_{1}<q_{2}<\cdots<q_{t}$ be a given set of t primes, and let Q be the set of all numbers

$$
q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{t}^{\alpha_{t}} \quad\left(\alpha_{i} \geqq 0, \quad i=1(1) t\right)
$$

generated by these primes. We consider the question of finding pairs $(S, S+1)$ of consecutive integers such that both S and $S+1$ belong to Q. Since it is obvious that no such pair exists unless $q_{1}=2$, we are at the same time asking about those members of Q which are triangular numbers. Interest in such pairs dates back to the $18^{\text {th }}$ century and seems to have been awakened by their usefulness in calculating logarithms of integers to great accuracy. Gauss notes for example that

$$
9800=2^{3} \cdot 5^{2} \cdot 7^{2}, \quad 9801=3^{4} \cdot 11^{2}
$$

Such pairs lead to sets of "nearly" dependent logarithms of primes. For instance the number

$$
\begin{aligned}
K & =\log 63927525376-\log 63927525375 \\
= & 13 \log 2-3 \log 3-3 \log 5-7 \log 7 \\
& \quad+4 \log 11+\log 13-\log 23+\log 41
\end{aligned}
$$

which cannot be zero because of the unique factorization theorem, is, however, less than $1.56427 \cdot 10^{-11}$.

Another use for such pairs is in finding particular solutions of diophantine equations of the form

$$
A x^{n}-B y^{m}=1
$$

For example the equation

$$
x^{2}-14 y^{3}=1
$$

has the solution $(55,6)$ because of the pair $(3024,3025)$. In a recent proof of some results on the distribution of consecutive pairs of higher residues, many hundreds of such pairs were used with t ranging up to 32 [1].

The problem proposed and solved by Størmer [2] is that of finding all pairs ($S, S+1$) both belonging to the given set Q. He showed that there are indeed only a finite number of such pairs, and that they can be found in a nontentative way by solving $3^{t}-2^{t}$ Pell equations. He gave all 23 pairs that go with the set

$$
Q: 2^{\alpha_{1}} 3^{\alpha_{2}} 5^{\alpha_{3}} 7^{\alpha_{4}}
$$

Received July 25, 1962.

