ARITHMETIC PROBLEMS CONCERNING CAUCHY'S FUNCTIONAL EQUATION ${ }^{1}$

BY
Ch. Pisot and I. J. Schoenberg
Introduction

The present study concerns some modifications of the functional equation

$$
f(x+y)=f(x)+f(y)
$$

which arose in connection with certain problems on additive arithmetic functions. An arithmetic function $F(n)(n=1,2, \cdots)$ is said to be additive provided that $F(m n)=F(m)+F(n)$ whenever $(m, n)=1$. In [2] Erdös found that if the additive function $F(n)$ is nondecreasing, i.e., $F(n) \leqq F(n+1)$ for all n, then it must be of the form $F(n)=C \log n$. This result was rediscovered by Moser and Lambek [3], and recently further proofs were given by Schoenberg [4] and Besicovitch [1].

Erdös' remarkable characterization of the function $\log n$ raises the following question: Let $p_{1}, p_{2}, \cdots, p_{k}$ be a given set of k ($\geqq 2$) distinct prime numbers. Let $F(n)$ be defined on the set A of integers n which allow no prime divisors except those among p_{1}, \cdots, p_{k}, and let $F(n)$ be additive, i.e.,

$$
\begin{equation*}
F\left(p_{1}^{u_{1}} p_{2}^{u_{2}} \cdots p_{k}^{u_{k}}\right)=F\left(p_{1}^{u_{1}}\right)+F\left(p_{2}^{u_{2}}\right)+\cdots+F\left(p_{k}^{u_{k}}\right) \tag{1}
\end{equation*}
$$

If we assume $F(n)$ to be nondecreasing over the set A, is it still true that $F(n)=C \log n$?

One of us having communicated this question to Erdös, received in reply a letter dated February 13, 1961, in which Erdös states, with brief indications of proofs, that the answer to the above question is affirmative if $k=3$ and negative if $k=2$. We shall deal with these results below under more general assumptions. The negative answer for $k=2$ is already established by any counterexample, a particularly simple one being

$$
\begin{equation*}
F(n)=\left[\log n / \log p_{1}\right]+\left[\log n / \log p_{2}\right] \tag{2}
\end{equation*}
$$

Indeed, it is easy to verify that this particular monotone $F(n)$ satisfies (1), for $k=2$, while it is not of the form $C \cdot \log n$, for $n=p_{1}^{u_{1}} p_{2}^{u_{2}}$ (see also Section 12).

At this point we change notations. If we write $F\left(e^{x}\right)=f(x), \log p_{i}=\alpha_{i}$, the relation (1) becomes
(3) $f\left(u_{1} \alpha_{1}+\cdots+u_{k} \alpha_{k}\right)=f\left(u_{1} \alpha_{1}\right)+\cdots+f\left(u_{k} \alpha_{k}\right) \quad\left(u_{i}\right.$ integers $\left.\geqq 0\right)$.

[^0]
[^0]: Received July 20, 1962.
 ${ }^{1}$ This paper was written at the Institute of Number Theory sponsored during the year 1961-1962 by the National Science Foundation at the University of Pennsylvania.

