SUBFIELDS OF $K(2^n)$ OF GENUS 0

BY
JOSEPH B. DENNIN, JR.

1. Introduction

Let Γ be the group of linear fractional transformations

$$w \rightarrow (aw + b)/(cw + d)$$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2×2 modular group, i.e. the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1 \pmod{n}$ and $b \equiv c \equiv 0 \pmod{n}$. G is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H. Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. The conjecture has been proven if n is prime to $2 \cdot 3 \cdot 5$ or is a power of 3 or 5 [5, 1]. In this paper we show that the conjecture is true if n is a power of 2.

Consider $M_{\Gamma(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by K(n). If j is the absolute Weierstrass invariant, K(n) is a finite Galois extension of C(j) with $\Gamma/\Gamma(n)$ for Galois group. Let SL(2,n) be the special linear group of degree two with coefficients in Z/nZ and let $LF(2,n) = SL(2,n)/\pm \mathrm{Id}$. Then $\Gamma/\Gamma(n)$ is isomorphic to LF(2,n). If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of LF(2,n), then by Galois theory, H corresponds to a subfield F of K(n) and the genus of H equals the genus of G.

The following notation will be standard. A matrix

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

will be written \pm (a, b, c, d).

$$I = \pm (1, 0, 0, 1);$$
 $T = \pm (0, -1, 1, 0);$
 $S = \pm (1, 1, 0, 1);$ $R = \pm (0, -1, 1, 1).$

T and S generate $LF(2, 2^n)$ and R = TS. H will be a subgroup of $LF(2, 2^n)$; g(H) =the genus of H and h or |H| =the order of H. [A] or $[\pm (a, b, c, d)]$ will denote the group generated by A or $\pm (a, b, c, d)$ respectively. φ_r^n will denote the natural homomorphism from $LF(2, 2^n)$ to $LF(2, 2^r)$, $1 \le r \le n$,

Received April 29, 1970.