SUBFIELDS OF $K\left(2^{n}\right)$ OF GENUS 0

BY

Joseph B. Dennin, Jr.

1. Introduction

Let Γ be the group of linear fractional transformations

$$
w \rightarrow(a w+b) /(c w+d)
$$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2×2 modular group, i.e. the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1(\bmod n)$ and $b \equiv c \equiv 0(\bmod n) . \quad G$ is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H. Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. The conjecture has been proven if n is prime to $2 \cdot 3 \cdot 5$ or is a power of 3 or $5[5,1]$. In this paper we show that the conjecture is true if n is a power of 2 .

Consider $M_{\Gamma(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by $K(n)$. If j is the absolute Weierstrass invariant, $K(n)$ is a finite Galois extension of $C(j)$ with $\Gamma / \Gamma(n)$ for Galois group. Let $S L(2, n)$ be the special linear group of degree two with coefficients in $Z / n Z$ and let $L F^{\prime}(2, n)=S L(2, n) / \pm \mathrm{Id}$. Then $\Gamma / \Gamma(n)$ is isomorphic to $L F(2, n)$. If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of $L F(2, n)$, then by Galois theory, H corresponds to a subfield F of $K(n)$ and the genus of H equals the genus of F equals the genus of G.

The following notation will be standard. A matrix

$$
\pm\left(\begin{array}{ll}
a & b \\
d & d
\end{array}\right)
$$

will be written $\pm(a, b, c, d)$.

$$
\begin{gathered}
I= \pm(1,0,0,1) ; \quad T= \pm(0,-1,1,0) \\
S= \pm(1,1,0,1) ; \quad R= \pm(0,-1,1,1)
\end{gathered}
$$

T and S generate $L F\left(2,2^{n}\right)$ and $R=T S . \quad H$ will be a subgroup of $L F\left(2,2^{n}\right)$; $g(H)=$ the genus of H and h or $|H|=$ the order of H. $[A]$ or $[\pm(a, b, c, d)]$ will denote the group generated by A or $\pm(a, b, c, d)$ respectively. φ_{r}^{n} will denote the natural homomorphism from $L F\left(2,2^{n}\right)$ to $L F\left(2,2^{r}\right), 1 \leq r \leq n$,

[^0]
[^0]: Received April 29, 1970.

