A CHARACTERIZATION OF $S_{p_{\theta}}(2)$

BY

KENNETH YANOSKO

Yamaki [6], [7] has characterized the simple groups having the centralizer of an involution isomorphic to the centralizer of a transvection in $S_{p_6}(2)$. His result is that such a simple group must be isomorphic to $S_{p_6}(2)$, A_{12} , or A_{13} . But a Sylow 2-subgroup of $S_{p_6}(2)$ contants three central involutions whose centralizers are nonisomorphic. The purpose of this paper is to prove the following result.

THEOREM. Let t_0 be an involution in the center of a Sylow 2-subroup of $S_{p_6}(2)$ such that t_0 is not a transvection. Let H_0 be the centralizer of t_0 in $S_{p_6}(2)$. Let G be a finite simple group containing an involution t such that $C_G(t) \simeq H_0$. Then $G \simeq S_{p_6}(2)$.

The notation we use is standard. For example:

$\{x, y, \cdots\}$	The set of elements x, y, \cdots
$\langle x, y, \cdots \rangle$	The group generated by x, y, \cdots
[x, y]	$x^{-1}y^{-1}xy$
x ^v	$y^{-1}xy$
$x \sim_{\scriptscriptstyle H} y$	x is conjugate to y in H
$\operatorname{cl}_{H}(x)$	The set of elements of H which are conjugate to x in H .
$O_{2'}(G)$	The largest normal odd order subgroup of G .
$M_{g}(X, 2')$	The set of odd order subgroups normalized by X which intersect
	X trivially.

1. Preliminary lemmas

Let G_0 be a group generated by the set of elements

$$\{u_i, w_j \mid 1 \le i \le 9, 1 \le j \le 3\}$$

with the following relations (for brevity we shall write $u_{ij} = u_i u_j$):

(1.1)
$$u_i^2 = 1 \text{ for } 1 \le i \le 9$$

 $[u_i, u_j] = 1 \text{ for } 4 \le i, j \le 9$
 $(u_{13})^2 = u_2$

Received March 2, 1970.