THE CUSP AMPLITUDES OF THE CONGRUENCE SUBGROUPS OF THE CLASSICAL MODULAR GROUP (II)

BY

H. LARCHER

1. Introduction

The homogeneous modular group $_{1}\Gamma = SL(2, Z)$. If $A \in _{1}\Gamma$ and

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

then A induces the linear fractional substitution $z \rightarrow A(z)$, where

$$A(z) = (az + b)/(cz + d), z = x + iy,$$

where x and y are real numbers. The group of all substitutions is known as the inhomogeneous modular group. A matrix $A \neq \pm I$, where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and the substitution A(z) are called parabolic if for a rational number ζ or $\zeta = \infty$, $A(\zeta) = \zeta$. We call ζ the fixed point of A(z) and of A. For a parabolic matrix P with fixed point ζ there exist $B \in {}_1\Gamma$ and a rational integer $n \neq 0$ such that

$$P = \pm B^{-1}U^n B$$
 where $U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\zeta = B^{-1}(\infty)$.

The modulus |n| of n is called the amplitude of P. If Γ is a subgroup of ${}_{1}\Gamma$ and $P \in \Gamma$ then ζ is also referred to as a fixed point or a cusp of Γ . The cusp amplitude of ζ in Γ is the smallest positive rational integer k such that

$$\pm B^{-1}U^{k}B \in \Gamma.$$

Two cusps η and ζ are said to be eqivalent under Γ , for which we write $\eta \sim_{\Gamma} \zeta$, if there is a $A \in \Gamma$ such that $\eta = A(\zeta)$. Equivalent cusps in Γ have the same amplitudes. For $\Gamma \subset {}_{1}\Gamma$ we denote by $C(\Gamma)$ the subset of the set of all positive rational integers containing all different cusp amplitudes of Γ .

© 1984 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 11, 1981.