THE CUSP AMPLITUDES OF THE CONGRUENCE SUBGROUPS OF THE CLASSICAL MODULAR GROUP (II)

BY

H. Larcher

1. Introduction

The homogeneous modular group ${ }_{1} \Gamma=\operatorname{SL}(2, Z)$. If $A \in{ }_{1} \Gamma$ and

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then A induces the linear fractional substitution $z \rightarrow A(z)$, where

$$
A(z)=(a z+b) /(c z+d), z=x+i y,
$$

where x and y are real numbers. The group of all substitutions is known as the inhomogeneous modular group. A matrix $A \neq \pm I$, where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and the substitution $A(z)$ are called parabolic if for a rational number ζ or $\zeta=\infty, A(\zeta)=\zeta$. We call ζ the fixed point of $A(z)$ and of A. For a parabolic matrix P with fixed point ζ there exist $B \in{ }_{1} \Gamma$ and a rational integer $n \neq$ 0 such that

$$
P= \pm B^{-1} U^{n} B \quad \text { where } U=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \zeta=B^{-1}(\infty) .
$$

The modulus $|n|$ of n is called the amplitude of P. If Γ is a subgroup of ${ }_{1} \Gamma$ and $P \in \Gamma$ then ζ is also referred to as a fixed point or a cusp of Γ. The cusp amplitude of ζ in Γ is the smallest positive rational integer k such that

$$
\pm B^{-1} U^{k} B \in \Gamma .
$$

Two cusps η and ζ are said to be eqivalent under Γ, for which we write $\eta \sim_{\Gamma} \zeta$, if there is a $A \in \Gamma$ such that $\eta=A(\zeta)$. Equivalent cusps in Γ have the same amplitudes. For $\Gamma \subset{ }_{1} \Gamma$ we denote by $C(\Gamma)$ the subset of the set of all positive rational integers containing all different cusp amplitudes of Γ.

