EULER CHARACTERISTICS OVER UNRAMIFIED REGULAR LOCAL RINGS

BY

MELVIN HOCHSTER¹

Let M, N be finitely generated modules over a local ring (R, m) (all rings are assumed commutative, with identity; (R, m) is "local" means that Ris Noetherian with maximal ideal m). If $Tor_j^R(M, N)$ has finite length for $j \ge i$, i a nonnegative integer, and vanishes for all sufficiently large j, we define

$$\chi_i^R(M, N) = \sum_{j \ge i} (-1)^{j-i} l(Tor_j^R(M, N)),$$

where l denotes length. The main result here is the following:

THEOREM. Let R be an unramified regular local ring and let M, N be finitely generated R-modules such that $Tor_i^R(M, N)$ has finite length, $i \ge 1$. If $\chi_i(M, N) = 0$, then

$$Tor_j^R(M, N) = 0 \quad for j \ge i.$$

It was already known (see [1], [2], [3]) that if R is regular and $Tor_i^R(M, N)$ is 0 (respectively, has finite length) then

$$Tor_i^R(M, N) = 0$$

(respectively, has finite length) for $j \ge i$. Moreover, in [3] it is shown that if R is an unramified regular local ring and $Tor_i^R(M, N)$ has finite length, $i \ge 1$, then $\chi_i^R(M, N) \ge 0$, and that if $i \ge 2$ or M or N is torsion-free, then $\chi_i^R(M, N) = 0$ if and only if $Tor_j^R(M, N) = 0$, $j \ge i$. Thus, the theorem is new only in the case i = 1.

As usual, we may reduce at once to the case where R is complete and then assume $R = V[[x_2, ..., x_n]]$, where $n = \dim R$ and V is a complete discrete valuation ring with maximal ideal x_1V . We abbreviate $x = x_1$.

We write $M \bigotimes_V N$ and $T \partial r_i^V(M, N)$ for the complete tensor product and complete Tor_i , respectively, of M and N over V (see [4, p. V-6].) Let $S = R \bigotimes_V R$. S is regular and if we map $S \to R$ by

$$a \otimes b \mapsto ab$$
,

Received December 4, 1981.

© 1984 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

¹ The author was supported in part by a grant from the National Science Foundation.