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1. Introduction

Let R be the ring of integers in a number field K, A be a nonzero ideal in R
and fl(x),..., fk(x) be homogeneous polynomials in n variables over R. In
this paper we obtain small solutions to the system of congruences

f(x)= --f(x)=0 (modA),

the notion of smallness being given two interpretations, as indicated in
Lemma 2.
The problem of finding small solutions of congruences has received consid-

erable attention in the case where R is the set of rational integers. For
instance, Schinzel, Schlickewei and Schmidt [6, Theorem 1] have shown that
for any positive integer m and quadratic form Q(x) over Z in n > 3 variables,
there is a nonzero solution x of the congruence

Q(x) 0 (mod m) (1.2)

such that maxlxl < m1/2+1/2(n-1). Using the same method of proof, Heath-
Brown [4, Theorem 2] has shown that if n 4, rn is an odd prime and det Q is
a square (mod m), then (1.2) has a nonzero solution with maxlxl < mx/2.

In this paper we generalize the geometric method of Schinzel et al [6] to
algebraic number fields and apply it in turn to systems of linear forms,
quadratic forms and forms of higher degree.
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