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I. Introduction and Statement of Results
If A is an r-square complex matrix then the permanent of A is defined by

per (A) --sr II=l
where the summation extends over the whole symmetric group Sr of degree
r. This function has considerable significance in certain combinatorial prob-
lems [7, p. 24]. The problem of finding relationships between rather awkward
combinatorial matrix functions such as the permanent, and the more classical
algebraic invariants is one of considerable interest and importance.

In a paper in the Illinois Journal in 1957 [3] the firs.t of the present authors
obtained an upper bound for the sum of the squares of all (n) r-square sub-
determinants of an n-square matrix A. This work was very recently gen-
eralized and improved in an interesting paper by Ryff [6]. In the present
paper we turn our attention to the substantially more difficult problem of
obtaining a significant upper bound for the sum of the squares of the absolute
values of all () r-square subpermanents of an n-square complex matrix A.
We then apply our main result to the ease of an incidence matrix for a (v, k, X)
configuration (Theorem 3).
We shall use the following notation throughout the paper. If A has real

eigenvalues, then Xl(A) _>_ X(A) >- >- X(A) will denote these. The
),1/2 *Asingular values ofA (defined to be the numbers ,,. (A >_- 0, j 1, 2, n)

will be designated byl(A) >__ a(A) __> >__ a(A). If1 -< r -< n, then
Qr, will denote the set of N () strictly increasing sequences w,
1 -< < 0. < < 0 <__ n; G, is the set of (+r-) non-decreasing se-
quences , 1 -< w __< w =< _<_ 50r n. If a and are in G,n then A[a
is the r-square matrix whose i, j entry is a,a, i, j 1, 2,..., r.
If at _>- a. >- >_- a >__ 0 is any set of n non-negative numbers then there
are (+-) homogeneous products ao I=a ,we G,. Now, although

r--1a >= a a are the two largest of these products, it is not true generally that
the ordering according o magnitude and the lexicographic ordering of the

r--2 a aa). Wea, Gr, coincide (e.g. a a. is not necessarily smaller than -1

let L(a, a, ..., a) designate the sum of the largest N (n) of the
(+-) homogeneous products a.
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The authors would like to take this occasion to make the following correction in

their paper Generalizations of some combinatorial inequalities by H. J. Ryser, this journal,
vol. 7 (1963), pp. 582-592" On page 591, line 19, instead of "The matrix ppT is non-
negative," read "The matrix ppT H is nonnegative."
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