INEQUALITIES FOR SUBPERMANENTS ${ }^{1}$

$B Y^{2}$
Marvin Marcus and William R. Gordon

I. Introduction and Statement of Results

If A is an r-square complex matrix then the permanent of A is defined by

$$
\operatorname{per}(A)=\sum_{\sigma \epsilon S_{r}} \prod_{i=1}^{r} a_{i \sigma(i)}
$$

where the summation extends over the whole symmetric group S_{r} of degree r. This function has considerable significance in certain combinatorial problems [7, p. 24]. The problem of finding relationships between rather awkward combinatorial matrix functions such as the permanent, and the more classical algebraic invariants is one of considerable interest and importance.

In a paper in the Illinois Journal in 1957 [3] the first of the present authors obtained an upper bound for the sum of the squares of all $\binom{n}{r}^{2} r$-square subdeterminants of an n-square matrix A. This work was very recently generalized and improved in an interesting paper by Ryff [6]. In the present paper we turn our attention to the substantially more difficult problem of obtaining a significant upper bound for the sum of the squares of the absolute values of all $\binom{n}{r}^{2} r$-square subpermanents of an n-square complex matrix A. We then apply our main result to the case of an incidence matrix for a (v, k, λ) configuration (Theorem 3).

We shall use the following notation throughout the paper. If A has real eigenvalues, then $\lambda_{1}(A) \geqq \lambda_{2}(A) \geqq \cdots \geqq \lambda_{n}(A)$ will denote these. The singular values of A (defined to be the numbers $\left.\lambda_{j}^{1 / 2}\left(A^{*} A\right) \geqq 0, j=1,2, \cdots, n\right)$ will be designated by $\alpha_{1}(A) \geqq \alpha_{2}(A) \geqq \cdots \geqq \alpha_{n}(A)$. If $1 \leqq r \leqq n$, then $Q_{r, n}$ will denote the set of $N=\binom{n}{r}$ strictly increasing sequences ω, $1 \leqq \omega_{1}<\omega_{2}<\cdots<\omega_{r} \leqq n ; G_{r, n}$ is the set of $\binom{n+r-1}{r}$ non-decreasing sequences $\omega, 1 \leqq \omega_{1} \leqq \omega_{2} \leqq \cdots \leqq \omega_{r} \leqq n$. If α and β are in $G_{r, n}$ then $A[\alpha \mid \beta]$ is the r-square matrix whose i, j entry is $a_{\alpha_{i} \beta_{j}}, i, j=1,2, \cdots, r$. If $a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \geqq 0$ is any set of n non-negative numbers then there are $\binom{n+r-1}{r}$ homogeneous products $a_{\omega}=\prod_{t=1}^{r} a_{\omega_{t}}, \omega \in G_{r, n}$. Now, although $a_{1}^{r} \geqq a_{1}^{r-1} a_{2}$ are the two largest of these products, it is not true generally that the ordering according to magnitude and the lexicographic ordering of the $a_{\omega}, \omega \in G_{r, n}$ coincide (e.g. $a_{1}^{r-2} a_{2}^{2}$ is not necessarily smaller than $a_{1}^{r-1} a_{3}$). We let $L_{r}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ designate the sum of the largest $N=\binom{n}{r}$ of the $\left({ }_{r}^{n+r-1}\right)$ homogeneous products a_{ω}.

[^0]
[^0]: Received June 26, 1963.
 ${ }^{1}$ The research of both authors was supported by the National Science Foundation.
 ${ }^{2}$ The authors would like to take this occasion to make the following correction in their paper Generalizations of some combinatorial inequalities by H. J. Ryser, this journal, vol. 7 (1963), pp. 582-592: On page 591, line 19, instead of "The matrix $P P^{T}$ is nonnegative," read "The matrix $P P^{T}=H$ is nonnegative."

