TWIST-SPINNING SPHERES IN SPHERES

BY

W.-C. HSIANG AND B. J. SANDERSON¹

I. Introduction

Let $\theta^{m,n}$, n > 4, denote the group of *h*-cobordism classes of pairs of spheres (S^m, Σ^n) , where S^m denotes an *m*-sphere with its usual structure and Σ^n denotes an embedded *n*-sphere which may have an exotic structure, [2], [9].

Our aim is to introduce an operation, which will be called *twist-spinning*;

 $\phi: \theta^{m,n} \times \pi_l(SO(n) \times SO(m-n)) \to \theta^{m+l,n+l}.$

When m = n + 2, the operation is twist-spinning as defined by Artin-Zeeman [1], [12], except that we have introduced tangential twisting by elements of $\pi_l(SO(n))$. The operation restricted to the embedded sphere Σ^n of the pair (S^m, Σ^n) is equivalent to a pairing of Milnor-Munkres [5], [6] (also Novikov [7]), except that the group $\pi_l(SO(n-1))$ has been replaced here by $\pi_l(SO(n))$. Another operation may be defined by replacing $\theta^{m,n}$ by $I^{m,n}$ the group of regular homotopy classes of immersions of S^n in S^m .

In §2, the operation is described and defined. In §3 it is related to a relative version of the Milnor-Munkres-Novikov pairing;

$$\pi_{0}(\operatorname{Diff}_{c}(R^{m-1}, R^{n-1})) \otimes \pi_{l}(SO(n-1) \times SO(m-n)) \rightarrow \pi_{0}(\operatorname{Diff}_{c}(R^{m+l-1}, R^{n+l-1})).$$

The resulting operation on normal bundles is investigated in §4 and found to be related to the Whitehead product pairing,

$$\pi_n BSO(m-n) \otimes \pi_{l+1} BSO(m-n) \to \pi_{n+l} BSO(m-n).$$

We are grateful to E. C. Zeeman for sending us a preprint of [12].

II. Twist-spinning

Let (S^m, Σ^n) we a pair of spheres representing an element of $\theta^{m,n}$. Let D^m_+ , D^m_- denote the upper and lower hemispheres of S^m respectively. Then $S^m = D^m_+ \cup D^m_-$. Now the pair (S^m, Σ^n) is diffeomorphic to

$$(D^m_+ \cup D^m_-, D^n_+ \cup \Sigma^n - \operatorname{Int} D^n_+)$$

where D^n_+ is a disc embedded in Σ^n and the inclusion $D^n_+ \subset D^m_+$ is assumed to be standard; further we may suppose the inclusion $\Sigma^n - \operatorname{Int} D^n_+ \subset D^m_-$ coincides with the standard inclusion $D^n_- \subset D^m_-$ near the boundary of $\Sigma^n - \operatorname{Int} D^n_+$.

Received April 27, 1964.

¹ During the preparation of this paper, the authors were partially supported by a National Science Foundation Grant.