CO-EQUALIZERS AND FUNCTORS

BY

K. A. HARDIE

0. Introduction

If X and Y are objects of a category C, let |X, Y| denote their associated morphism set. Similarly if S and T are functors let |S, T| denote the class (not necessarily a set) of natural transformations from S to T. Unless otherwise stated all functors will be assumed to be covariant. Let $R : \mathbf{V} \to \mathbf{W}$ be a functor. Then $X \in \mathbf{V}$ is a (*left*) *R*-object if for every $Y \in \mathbf{V}$ the mapping function

$$R: |X, Y| \to |RX, RY|$$

is a bijection.¹ We shall find in various circumstances certain conditions some necessary others sufficient for X to be an R-object. It is clear that such information could be of interest, however our objective is to consider the case $\mathbf{V} = \mathbf{V}(\mathbf{C}, \mathbf{D})$ a subcategory of the functor category (\mathbf{C}, \mathbf{D}) and $\mathbf{W} = \mathbf{W}(\mathbf{A}, \mathbf{D})$ a subcategory of (\mathbf{A}, \mathbf{D}) in which $R : \mathbf{V} \to \mathbf{W}$ is induced by a functor $J : \mathbf{A} \to \mathbf{C}$. Then to say that $S \in \mathbf{V}$ is an R-object means that for every $T \in \mathbf{V}$ and every $u' \in |SJ, TJ|$ there exists a unique $u \in |S, T|$ such that uJ = u'. The situation described arises frequently in connection with "uniqueness theorems". Thus to cite one celebrated example, if \mathbf{V} is the category of homology theories on the category \mathbf{C} of triangulable pairs and pair maps and if J is the functor which injects the subcategory "generated by" a single point then Eilenberg and Steenrod proved [3] that each homology theory S is an R-object in \mathbf{V} .

In this paper we shall be chiefly concerned with the case $\mathbf{A} = \mathbf{X}$, the subcategory of **C** consisting of a single object X and its **C**-endomorphisms, J being the injection functor and we shall describe an *R*-object $S \in \mathbf{V}$ as an X-functor in **V**. It follows that the X-functors are determined (up to natural equivalence in **V**) by their action on **X**.

In general our basic assumption is that there exists a functor $L : \mathbf{W} \to \mathbf{V}$ and a natural transformation $\alpha : LR \to 1$. L is sometimes (but not always) a left adjoint of R and then we find:

THEOREM 0.1. If L is a left adjoint of R then X is an R-object if and only if $\alpha X \in |LRX, X|$ is an isomorphism.

One case in which 0.1 is involved is the following. Let $\mathbf{M} = \mathbf{M}_{\mathbf{A}}$ denote the

Received May 11, 1966.

¹ X is an R-object if and only if (X, i_{RX}) is free over RX with respect to R in the sense of A. Frei, *Freie Objekte und multiplikative structuren*, Math. Zeitschrift, vol. 93 (1966), pp. 109-141. There is some overlap in Section 1 with Frei's results. In particular Theorem 0.1 as stated is essentially not new. (See however Remark 1.1.) Our applications are quite different.