A TOPOLOGICAL H-COBORDISM THEOREM FOR $n \geq 5$

BY

E. H. Connell¹

An *H*-cobordism is a compact manifold M with boundary components Nand \overline{N} which are deformation retracts of M. If $M = M^n$ is a simply connected differentiable manifold and $n \ge 6$, then M is diffeomorphic to $N \times I$ [11]. If M is a combinatorial manifold and $n \ge 5$, then $M - \overline{N}$ is piecewise-linearly homeomorphic to $N \times [0, 1)$ (p. 251 of [14]). In this paper it will be shown that if M is a topological *n*-manifold and $n \ge 5$, then $M - \overline{N}$ is homeomorphic to $N \times [0, 1)$. This is done by a type of topological engulfing (see Lemma 1).

A stronger form of Lemma 1 has independently (and previously) been obtained by M. H. A. Newman [1]. A corollary to these procedures is that if Y is a closed topological manifold which is a homotopy sphere, and $n \ge 5$, then Y is homeomorphic to S^n . The reader is assumed familiar with the proof of the combinatorial engulfing lemma [2], [5], [8].

Notation. Suppose M is a metric space with the distance between x and $y \in M$ denoted by d(x, y). If $Y \subset M$ is any subset of M, d(x, Y) will denote the distance from x to Y, d(Y) will denote the diameter of Y, and for any $\varepsilon > 0$, $V(Y, M, \varepsilon)$ will denote the set $\{z \in N : d(z, Y) < \varepsilon\}$. If K is a finite complex, the statement that $f : K \to \mathbb{R}^n$ is piecewise-linear (p.w.l.) means \exists a subdivision K_1 of K such that any simplex σ of K_1 is mapped linearly into \mathbb{R}^n by f. If M is a topological manifold, the interior and boundary of M are denoted by Int M and ∂M respectively. D^n denotes the closed n-cell in \mathbb{R}^n ,

$$D^{n} = \{(x_{1}, x_{2}, \cdots, x_{n}) : -1 \leq x_{i} \leq 1, i = 1, 2, \cdots, n\}.$$

Hypothesis I. $M = M^n$ is a compact, connected topological *n*-manifold $(n \ge 5)$ with boundary consisting of two components, $\partial M = N \cup \overline{N}; \pi_i(M, N) = \pi_i(M, \overline{N}) = 0$ for $i = 1, 2, \dots, n-3$;

$$g: N \times [0, 1] \rightarrow M - \overline{N}$$
 and $\overline{g}: \overline{N} \times [0, 1] \rightarrow M - N$

are topological embeddings with g(x, 0) = x for all $x \in N$ and $\bar{g}(y, 0) = y$ for all $y \in \bar{N}$. (Note: If M is any topological manifold with boundary components N and \bar{N} , then it follows from [13] that the embeddings g and \bar{g} exist.)

LEMMA 1. Suppose Hypothesis I. Suppose $K \subset \mathbb{R}^n$ is a finite m-complex (a rectilinear complex in \mathbb{R}^n), $m \leq n - 3$, $h : \mathbb{R}^n \to \text{Int } M$ is a topological embedding, and ε is a number with $0 < \varepsilon < 1$. Then \exists a homeomorphism

Received April 25, 1966.

¹ The author has been supported by the Sloan Foundation and by a National Science Foundation grant.