ON UNIQUE FACTORIZATION IN ALGEBRAIC FUNCTION FIELDS

BY
J. V. Armitage

1. Introduction

Let K be a field of algebraic functions of one variable over an algebraically closed field k and let R be an integrally closed sub-domain of K, properly containing k, which is contained in all but a finite number of valuation rings of K / k. Cunnea [3, Corollary 4.2] has proved that R is a unique factorization domain if and only if K has genus 0 . The present writer [1] ${ }^{1}$ has discussed the question of the existence of a euclidean algorithm in a ring which is essentially like R and, in particular, has proved that R is euclidean if K has genus 0 . As usual, the existence of a euclidean algorithm in R implies that factorization is unique. In the light of this and of Cunnea's results the following is perhaps of interest.

Theorem. Let K be a field of algebraic functions of one variable over an infinite field k and let R be an integrally closed sub-domain of K, properly containing k, which has no poles outside a finite set $S=\left\{\mathfrak{P}_{1}, \cdots, \mathfrak{F}_{s}\right\}$ of places of K / k. Then R is euclidean if and only if

$$
\begin{equation*}
g+d_{s}=1 \tag{1}
\end{equation*}
$$

where g is the genus of K and d_{s} is the greatest common divisor of the degrees of the places in S.

We recall the essential results of [1] and deduce the sufficiency part of the theorem in §2. In §3 we prove a lemma on linear spaces and the proof of the theorem is concluded in §4. The case of finite k is mentioned in $\S 5$.

2. Euclid's algorithm in function fields

Let \mathfrak{b} be a divisor of K based on the set S and let $\mathfrak{R}(\mathfrak{b}, S)$ denote the set

$$
\begin{equation*}
\mathfrak{R}(\mathfrak{b}, S)=\left\{\beta \in K: \nu_{\mathfrak{P}_{i}}(\beta) \geq \nu_{\mathfrak{P}_{i}}(\mathfrak{b}), \mathfrak{P}_{i} \in S\right\} \tag{2}
\end{equation*}
$$

where $\nu_{\mathfrak{P}_{i}}$ denotes the order function at \mathfrak{P}_{i}. By a straightforward adaptation of the argument in [1], it follows that R is a euclidean domain if and only if

$$
\begin{equation*}
K=\cup(\mathfrak{R}(\mathfrak{b}, S)+R) \tag{3}
\end{equation*}
$$

where the union is taken over all divisors \mathfrak{b} based on S such that $\operatorname{deg}(\mathfrak{b}) \geq 1$. Moreover

[^0]
[^0]: Received March 18, 1966.
 ${ }^{1}$ In [1], k was a finite field; the extension to an infinite field presents no difficulty. Section 7 of [1] is fallacious, but is not relevant to the present paper; see Corrigendum and Addendum to appear in J. London Math. Soc.

