## HIGHER ORDER WHITEHEAD PRODUCTS AND POSTNIKOV SYSTEMS

BY<br>Gerald J. Porter ${ }^{1}$

In an arcwise connected CW-complex, higher order Whitehead products are determined, as are all homotopy operations, by the Postnikov invariants of the space. This fact has been used implicitly in [3] to prove that certain products are non-zero. In this note we calculate this relationship explicitly. This is done by relating Whitehead products and classical obstruction theory. Let $P^{n}(C)$ denote $n$-dimensional complex projective space. As an application we show that if $\iota \in \pi_{2}\left(P^{n}(C)\right)$ is a generator, then the set of $(n+1)^{\text {st }}$ order Whitehead products $[\iota, \cdots, \iota]$ equals $(n+1)!\sigma$, where $\sigma$ is a generator of $\pi_{2 n+1}\left(P^{n}(C)\right)$.

The author would like to thank M. Arkowitz for raising the question about $P^{n}(C)$ which led to this note.

Let $T$ denote the subset of the cartesian product, $\times_{i=1}^{k} S^{n_{i}}$, consisting of those points with at least one coordinate at a base point. We assume throughout that $n_{i}>1$, all $i$, and $k \geq 2$. Choose a generator $\mu \in H_{N}\left(\times S^{n_{i}} ; Z\right)$, where $N=\sum n_{i}$. Given a map $g: T \rightarrow X$, the $k^{\text {th }}$ order Whitehead product, $W(g) \in \pi_{N-1}(X)$, is defined by $W(g)=g_{*} \partial H j_{*}(\mu)$, where $j_{*}$ is induced by the inclusion,

$$
j:\left(\times S^{n_{i}}, *\right) \rightarrow\left(\times S^{n_{i}}, T\right)
$$

$H$ is the Hurewicz homomorphism, and $\partial$ is the boundary in the homotopy sequence of the pair $\left(\times S^{n_{i}}, T\right)$. These products were defined and studied in [2]. It was shown there that $g$ can be extended to the cartesian product if and only if $W(g)=0$.

On the other hand classical obstruction theory yields an element,

$$
o(g) \in H^{N}\left(\times S^{n_{i}}, T ; \pi_{N-1}(X)\right)
$$

such that $g$ can be extended if and only if $o(g)=0$. (We use here the fact that the $(N-2)$ skeleton of $\times S^{n_{i}}$ equals $T$.)

Let $\langle$,$\rangle denote the Kronecker pairing$

$$
H^{N}\left(\times S^{n_{i}} ; \pi_{N-1}(X)\right) \otimes H_{N}\left(\times S^{n_{i}} ; Z\right) \rightarrow \pi_{N-1}(X)
$$

The following lemma is then evident.
Lemma 1. $\left\langle j^{*} o(g), \mu\right\rangle=W(g)$.
Given a fibre space $(E, p, B)$ with fibre $F$ and a map $g: T \rightarrow E$ such that $p g$ can be extended to $h: \times S^{n}{ }_{i} \rightarrow B$, the usual obstruction theory for cross-

[^0]
[^0]:    Received May 26, 1966.
    ${ }^{1}$ The author was an Office of Naval Research postdoctoral research fellow during part of the period in which this note was written.

