HIGHER ORDER WHITEHEAD PRODUCTS AND POSTNIKOV SYSTEMS

BY

GERALD J. PORTER¹

In an arcwise connected CW-complex, higher order Whitehead products are determined, as are all homotopy operations, by the Postnikov invariants of the space. This fact has been used implicitly in [3] to prove that certain products are non-zero. In this note we calculate this relationship explicitly. This is done by relating Whitehead products and classical obstruction theory. Let $P^{n}(C)$ denote *n*-dimensional complex projective space. As an application we show that if $\iota \in \pi_{2}(P^{n}(C))$ is a generator, then the set of $(n + 1)^{\text{st}}$ order Whitehead products $[\iota, \dots, \iota]$ equals $(n + 1)! \sigma$, where σ is a generator of $\pi_{2n+1}(P^{n}(C))$.

The author would like to thank M. Arkowitz for raising the question about $P^{n}(C)$ which led to this note.

Let T denote the subset of the cartesian product, $\times_{i=1}^{k} S^{n_i}$, consisting of those points with at least one coordinate at a base point. We assume throughout that $n_i > 1$, all i, and $k \ge 2$. Choose a generator $\mu \in H_N(\times S^{n_i}; Z)$, where $N = \sum n_i$. Given a map $g: T \to X$, the k^{th} order Whitehead product, $W(g) \in \pi_{N-1}(X)$, is defined by $W(g) = g_* \partial H j_*(\mu)$, where j_* is induced by the inclusion,

 $j: (\times S^{n_i}, *) \to (\times S^{n_i}, T),$

H is the Hurewicz homomorphism, and ∂ is the boundary in the homotopy sequence of the pair $(\times S^{n_i}, T)$. These products were defined and studied in [2]. It was shown there that *g* can be extended to the cartesian product if and only if W(g) = 0.

On the other hand classical obstruction theory yields an element,

$$o(g) \in H^{\mathbb{N}}(\times S^{n_i}, T; \pi_{\mathbb{N}-1}(X)),$$

such that g can be extended if and only if o(g) = 0. (We use here the fact that the (N - 2) skeleton of $\times S^{n_i}$ equals T.)

Let \langle , \rangle denote the Kronecker pairing

$$H^{\mathbb{N}}(\times S^{n_i}; \pi_{\mathbb{N}-1}(X)) \otimes H_{\mathbb{N}}(\times S^{n_i}; Z) \to \pi_{\mathbb{N}-1}(X).$$

The following lemma is then evident.

LEMMA 1. $\langle j^*o(g), \mu \rangle = W(g).$

Given a fibre space (E, p, B) with fibre F and a map $g: T \to E$ such that pg can be extended to $h: X S^n \to B$, the usual obstruction theory for cross-

Received May 26, 1966.

¹ The author was an Office of Naval Research postdoctoral research fellow during part of the period in which this note was written.