DEFECT GROUPS IN THE THEORY OF REPRESENTATIONS OF FINITE GROUPS

BY

RICHARD BRAUER

Dedicated to Oscar Zariski

1. Introduction¹

Let G be a finite group. Let Ξ be an algebraically closed field. As is well known, the study of the characters of G is closely related to that of the group algebra $\Xi[G]$ and of its center $Z = Z(\Xi[G])$. We call Z the class algebra of G. We are concerned here with a further investigation of Z continuing the work in [1].

The dimension of Z as a Ξ -space is the class number k(G) of G. Since we are interested in characters and related functions, we also consider the dual space \hat{Z} consisting of all linear functions defined on Z with values in Ξ .

Write Z as a direct sum

$$(1.1) Z = \oplus \sum B$$

of block ideals of Z, i.e. of indecomposable ideals of Z. This decomposition (1.1) corresponds to the decomposition

(1.2)
$$\hat{Z} = \bigoplus \sum F_B$$

where F_B is the subspace of \hat{Z} consisting of those $f \in \hat{Z}$ which vanish on all block ideals $B_1 \neq B$ in (1.1). Then B and F_B are themselves dual vector spaces and they have the same dimension k_B .

Each B is a commutative ring with a unit element η_B . If 1 is the unit element of Z, we have

$$(1.3) 1 = \sum_{B} \eta_{B}$$

and (1.3) is the decomposition of 1 into primitive orthogonal idempotents. It follows that

$$\Xi[G] = \bigoplus \sum_{B} \eta_{B} \Xi[G]$$

is the decomposition of the group algebra into (two-sided) block ideals.

Since B is indecomposable, the residue class ring \overline{B} of B modulo its radical is simple and hence an extension field of finite degree of Ξ . Since Ξ was algebraically closed, \overline{B} is isomorphic to Ξ . We then have an algebra homomorphism ω of B onto Ξ . Clearly, ω can be extended to an algebra homomorphism ω_B of Z onto Ξ such that ω_B vanishes for all block ideals $B_1 \neq B$ in (1.1). Thus $\omega_B \in F_B$. Conversely, it is seen at once that each non-zero algebra homomorphism of Z into Ξ coincides with ω_B for some B.

¹ This work has been supported in part by a National Science Foundation grant.