MODULAR SUBGROUPS OF FINITE GROUPS II

BY

ROLAND SCHMIDT

The subgroup M of the group G is said to be *modular in* G ($M \mathfrak{m} G$) if

 $(U \cup M) \cap V = U \cup (M \cap V)$ for all $U, V \subseteq G$ such that $U \subseteq V$, and

 $(U \cup M) \cap V = (U \cap V) \cup M$ for all $U, V \subseteq G$ such that $M \subseteq V$.

In [5] we proved among other results that M/M_{σ} is nilpotent and M^{σ}/M_{σ} is supersolvable for a modular subgroup M of a finite group G (M_{σ} being the core, M^{σ} the normal closure of M in G). One of the problems that remained open in [5] was to discover the exact structure of G/M_{σ} , M^{σ}/M_{σ} , and M/M_{σ} . In the present paper we solve this problem modulo the quasinormal Sylow subgroups of M/M_{σ} . We prove the following

THEOREM. Let M be modular in the (finite) group G, and let Q/M_G be a g-Sylow subgroup of M/M_G which is not quasinormal in G/M_G , q a prime.

Then $G/M_{\mathcal{G}} = Q^{\dot{a}}/M_{\mathcal{G}} \times K$, where $Q^{\dot{a}}/M_{\mathcal{G}}$ is a P-group of order $p^n \cdot q$, p a prime, p > q, and $(|Q^{\dot{a}}/M_{\mathcal{G}}|, |K|) = 1$.

(For the definition of a P-group see [6, p. 12] or [5].)

An immediate consequence of this theorem is the following

COROLLARY. Let M be modular in G, and let $M_G = 1$ (to make notation simpler).

Then $G = P_1 \times \cdots \times P_r \times K$, where P_i is a P-group of order $p_i^{n_i} \cdot q_i$, p_i , q_i primes, $p_i > q_i$, $(|P_i|, |P_j|) = (|P_i|, |K|) = 1$ $(i, j = 1, \cdots, r; i \neq j)$, and where $M = Q_1 \times \cdots \times Q_r \times (M \cap K)$, with Q_i being a q_i -Sylow subgroup of P_i , and $M \cap K$ being quasinormal in G.

This corollary gives the solution of the problem mentioned above modulo the quasinormal part $M \cap K$ of M, about which we cannot say very much (except, of course, that it is quasinormal in G). Since it is obvious that a subgroup Q is modular in a group G whenever G/Q_G has the structure given in the Theorem, we also cannot say anything about the structure of the complement K in G/M_G .

Some other consequences of the theorem are perhaps worth mentioning.

(1) Let M be modular in G, and let Q/M_{G} be a Sylow subgroup of M/M_{G} . Then Q is modular in G.

(2) A minimal modular (but not normal) subgroup of a group is of prime power order.

(3) Let M be modular in G, and let q be a prime dividing $|M: M_{G}|$. Then there is a normal subgroup N of index q in G.

Received May 1, 1968.