MODULAR SUBGROUPS OF FINITE GROUPS II

BY
Roland Schmidt

The subgroup M of the group G is said to be modular in $G(M \mathfrak{m} G$) if
$(U \cup M) \cap V=U \cup(M \cap V)$ for all $U, V \subseteq G$ such that $U \subseteq V$, and $(U \cup M) \cap V=(U \cap V) \cup M$ for all $U, V \subseteq G$ such that $M \subseteq V$.
In [5] we proved among other results that M / M_{G} is nilpotent and M^{G} / M_{G} is supersolvable for a modular subgroup M of a finite group G (M_{G} being the core, M^{G} the normal closure of M in $\left.G\right)$. One of the problems that remained open in [5] was to discover the exact structure of $G / M_{G}, M^{G} / M_{G}$, and M / M_{G}. In the present paper we solve this problem modulo the quasinormal Sylow subgroups of M / M_{G}. We prove the following

Theorem. Let M be modular in the (finite) group G, and let Q / M_{G} be a g Sylow subgroup of M / M_{G} which is not quasinormal in $G / M_{G}, q$ a prime.

Then $G / M_{G}=Q^{G} / M_{G} \times K$, where Q^{G} / M_{G} is a P-group of order $p^{n} \cdot q, p$ a prime, $p>q$, and $\left(\left|Q^{G} / M_{G}\right|,|K|\right)=1$.
(For the definition of a P-group see [6, p. 12] or [5].)
An immediate consequence of this theorem is the following
Corollary. Let M be modular in G, and let $M_{G}=1$ (to make notation simpler).

Then $G=P_{1} \times \cdots \times P_{r} \times K$, where P_{i} is a P-group of order $p_{i}^{n_{i}} \cdot q_{i}, p_{i}, q_{i}$ primes, $p_{i}>q_{i},\left(\left|P_{i}\right|,\left|P_{j}\right|\right)=\left(\left|P_{i}\right|,|K|\right)=1(i, j=1, \cdots, r ; i \neq j)$, and where $M=Q_{1} \times \cdots \times Q_{r} \times(M \cap K)$, with Q_{i} being a q_{i}-Sylow subgroup of P_{i}, and $M \cap K$ being quasinormal in G.

This corollary gives the solution of the problem mentioned above modulo the quasinormal part $M \cap K$ of M, about which we cannot say very much (except, of course, that it is quasinormal in G). Since it is obvious that a subgroup Q is modular in a group G whenever G / Q_{G} has the structure given in the Theorem, we also cannot say anything about the structure of the complement K in G / M_{G}.

Some other consequences of the theorem are perhaps worth mentioning.
(1) Let M be modular in G, and let Q / M_{G} be a Sylow subgroup of M / M_{G}. Then Q is modular in G.
(2) A minimal modular (but not normal) subgroup of a group is of prime power order.
(3) Let M be modular in G, and let q be a prime dividing $\left|M: M_{G}\right|$. Then there is a normal subgroup N of index q in G.

[^0]
[^0]: Received May 1, 1968.

