APPLICATION OF DE BRANGES SPACES OF INTEGRAL FUNCTIONS TO THE PREDICTION OF STATIONARY GAUSSIAN PROCESSES

BY

H. DYM¹ AND H. P. MCKEAN, JR.

Contents

- 1. Introduction.
 - 1.1 Stationary Gaussian processes.
 - 1.2 Trigonometrical approximation with a Hardy weight.
 - 1.3 de Branges spaces of integral functions.
 - 1.4 Prediction.
 - 1.5 Germ and gap.
- 2. Preparations.
 - 2.1 Hardy functions.
 - 2.2 Integral functions of exponential type.
 - 2.3 de Branges spaces.
- 3. de Branges subspaces of **Z**.
 - 3.1 \mathbf{Z}^{T} as a de Branges space.
 - 3.2 \mathbf{Z}^{T} as integral functions of type $\leq T$ belonging to \mathbf{Z} .
 - 3.3 Z_0 and the gap Z^0/Z_{∞} .
 - 3.4 Alternative discussion of Z_{∞} .
 - 3.5 Example of a gap.

4. Eigendifferentials.

- 4.1 Type spectrum for \mathbf{Z}/\mathbf{Z}^0 .
- 4.2 Discrete spectrum for Z_{∞} .
- 4.3 Eigendifferential transforms.
- 4.4 Some examples.

5. Prediction.

- 5.1 Prediction using the whole past.
- 5.2 Prediction using a bounded segment of the past.

Usage

Greek letters α, β, γ , etc. stand for complex numbers. * indicates conjugation. f^{\times} means $[f(\gamma^*)]^*$. $\lg^+ x$ is the logarithm of the bigger of 1 and x, and $\lg^- x = \lg^+ (1/x)$ so that $\lg x = \lg^+ x - \lg^- x$. \int indicates integration over the line R^1 , as in

$$\int (1 + \gamma^2)^{-1} \lg^+ |f| = \int_{-\infty}^{+\infty} (1 + \gamma^2)^{-1} \lg^+ |f(\gamma)| d\gamma.$$

Received April 26, 1968.

¹ The first author gratefully acknowledges the support of an NSF grant during the summer of 1967.