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1. Introduction
The generalized heat equation is given by
u  wou  du
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v a fixed positive number. The fundamental solution of (1.1) is the function
G(z;t) = G(z, 0;t), where
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Ja«(2) being the ordinary Bessel function of order a and I.(z) the Bessel
function of imaginary argument. It is well known (see [5]) that if u(z, f)
is a solution of (1.1), so is its Appell transform u*(x, t) defined by

(1.3) u(z, t) = Q(z; u(z/t, —1/t).

The Poisson-Hankel transform of a function ¢ is given by

(1.4 [ 66 v 0ew) auw), t>0,

whenever the integral exists. Taking ¢(z) = z”, we set

(15) Sue, ) = [ 476(2, 430 dul), v> =2

Sy.(z, t) satisfies equation (1.1), and in particular, if ¥ = 2n, S,.(z, ) is
the generalized heat polynomial P,,(z, t) studied in [5]. In that paper,
those solutions of (1.1) were characterized which have representations in
series of P, ,,(x, t) and of their Appell transforms W, ,(xz, t). It is the present
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