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1. Introduction

The generalized heat equation is given by
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a fixed positive number. The fundamental solution of (1.1) is the function

G(x; t) G(x, 0; t), where

G(x, y; t) f e-"t(xu)(yu) dtt(u), > O,
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Ja(z) being the ordinary Bessel function of order a and Ia(z) the Bessel
function of imaginary argument. It is well known (see [5]) that if u(x, t)
is a solution of (1.1), so is its Appell transform u’(x, t) defined by

(1.3) u(x, t) G(x; t)u(x/t, l/t).

The Poisson-Hankel transform of a function is given by

(1.4) G(x, y; t)(y) dry(y), t>O,

whenever the integral exists. Taking (x) x, we set

(1.5) S,.(x, t) y’a(x, y; t) dg(y),

S.,(x, t) satisfies equation (1.1), and in particular, if y 2n, S,.,(x, t) is
the generalized heat polynomial P,.,(x, t) studied in [5]. In that paper,
those solutions of (1.1) were characterized which have representations in
series of P,.(x, t) and of their Appell transforms W,.,(x, t). It is the present
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