lebesgue spaces of parabolic potentials

BY

Richard J. Bagby

Introduction

We define a class of spaces \mathscr{L}_{α}^{p} via Fourier transform techniques. These spaces have been studied previously by Sampson [11]. They arise in the study of the heat equation; they are the parabolic analogue of the spaces of Bessel potentials introduced by Aronszajn and Smith [1] and by Calderón [4]. The results obtained in this paper are analogous to results obtained by Strichartz [13] for Bessel potentials.

The first chapter contains the basic facts about \mathcal{L}_{α}^{p} spaces. In the second chapter we characterize some of these spaces in terms of an integral norm of a difference quotient. We develop an interpolation theory for these spaces in the third chapter. These results are of some interest in themselves; they are used in the fourth chapter to find sufficient conditions for the product of two functions to be in one of the spaces \mathscr{L}_{α}^{p}.

Establishing the characterization of Chapter 2 requires a number of calculations. The appendix contains the worst of these.

This paper consists essentially of the author's doctoral dissertation at Rice University. I wish to thank my advisor Dr. B. Frank Jones for his help. Financial support was provided by the United States Air Force, N.A.S.A., and the Schlumberger Foundation.

1. Preliminaries

1.1 Notation. Let E^{n+1} denote Euclidean $(n+1)$-space. Points in E^{n+1} will be denoted in the form (x, t), where $x \in E^{n}$. Unless explicitly stated otherwise, all function spaces are assumed to be spaces of functions defined on E^{n+1}.

The usual inner product in E^{n} will be denoted by $x \cdot y$. For $x \in E^{n}$, $|x|=(x \cdot x)^{1 / 2}$. Differential operators are expressed in the form

$$
D_{x}^{\alpha} D_{t}^{j}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}(\partial / \partial t)^{j} ;
$$

the order of the multi-index α is denoted by $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$. The Laplace operator in E^{n} is denoted by Δ_{x}.

Let \mathcal{S} denote the space of C^{∞} functions ϕ satisfying

$$
\sup _{(x, t)}\left|P(x, t) D_{x}^{\alpha} D_{t}^{j} \phi(x, t)\right|<\infty
$$

for any polynomial P and any $\alpha, j . \delta$ is given the usual topology; see Schwartz [12]. The dual of S is denoted by δ^{\prime}; its elements are called tempered distributions.

[^0]
[^0]: Received April 15, 1969.

