a New relation On the stiefel-whitney classes Of SPIN MANIFOLDS

BY
W. Stephen Wilson

1. Introduction

Let all manifolds considered be n-dimensional, closed, compact, connected C^{∞} manifolds. Let $\tau_{M}: M \rightarrow B O$ be the classifying map for the stable tangent bundle of M. Recall that $H^{*}(B O)$ is a polynomial algebra on the universal Stiefel-Whitney classes, w_{1}, w_{2}, \cdots, where all coefficients are Z_{2}. Let $S \subset H^{*}(B O)$, then define $I_{n}(S$, geom $) \subset H^{*}(B O)$ to be the ideal $\bigcap_{M} \operatorname{ker} \tau_{M}^{*}$ where the intersection is taken over all n-dimensional manifolds with $S \subset \operatorname{ker} \tau_{M}^{*}$. Let H be an n-dimensional Poincaré algebra. There is a unique right-left A-homomorphism $\tau_{H}: H^{*}(B O) \rightarrow H, A$ the Steenrod algebra (see Brown-Peterson [5, Lemma 5.1, p. 44]). Define $I_{n}(S$, alg $) \subset$ $H^{*}(B O)$ to be the ideal given by $\bigcap_{H} \operatorname{ker} \tau_{H}$ where H runs over all n-dimensional Poincaré algebras such that $\tau_{H}(S)=0$.

For the cases $S=\emptyset,\left\{w_{1}\right\}, I_{n}(S$, geom $)$ corresponds to the intersection of $\operatorname{ker} \tau_{M}^{*}$ taken over all manifolds, and respectively, all oriented manifolds. For these two cases, Brown and Peterson show that $I_{n}(S$, geom $)=I_{n}(S$, alg $)$ [5, Theorems 5.2 and 5.4, p. 45]. Clearly, one has $I_{n}(S, \operatorname{alg}) \subset I_{n}(S$, geom $)$ for all S. [5, p. 45] gives an example to show that equality does not always hold.

In this paper, the case where $S=\left\{w_{1}, w_{2}\right\}$ will be considered. $I_{n}\left(\left\{w_{1}, w_{2}\right\}\right.$, geom) corresponds to the intersection of $\operatorname{ker} \tau_{M}^{*}$ where M runs over all n-dimensional Spin manifolds.

Let $B O\langle k\rangle$ be the $k-1$ connective covering over $B O$ and $\mathrm{BO}\langle k\rangle$ the connected Ω-spectrum with $0^{\text {th }}$ term $B O\langle k\rangle$. For $k=0$ and 2 , the bottom cohomology classes of $\mathrm{BO}\langle 0\rangle$ and $\mathrm{BO}\langle 2\rangle$ induce maps

$$
\eta: H_{*}(X, \mathrm{BO}\langle 0\rangle) \rightarrow H_{*}(X) \quad \text { and } \quad \gamma: H_{*}(X, \mathrm{BO}\langle 2\rangle) \rightarrow H_{*-2}(X)
$$

on the generalized homology [12]. In Section 2, the computation of $I_{n}\left(\left\{w_{1}, w_{2}\right\} \text {, geom }\right)^{q}$ is reduced to a problem about the image of the maps η and γ for the space $X=K\left(Z_{2}, n-q\right)$. This reduction is a generalization to Spin of Brown-Peterson results for SO [5]. The major part of this paper is devoted to obtaining certain information about the image of η for $X=K\left(Z_{2}, 2\right)$. These results are stated in Section 2 and used there to prove that $I_{n}\left(\left\{w_{1}, w_{2}\right\}\right.$, geom $)$ is not equal to $I_{n}\left(\left\{w_{1}, w_{2}\right\}\right.$, alg $)$ in general. In particular, it will be shown that

$$
w_{7} \in I_{9}\left(\left\{w_{1}, w_{2}\right\}, \text { geom }\right)^{7} \quad \text { but } \quad w_{7} \notin I_{9}\left(\left\{w_{1}, w_{2}\right\}, \text { alg }\right)^{7}
$$

