A NEW RELATION ON THE STIEFEL-WHITNEY CLASSES OF SPIN MANIFOLDS

BY

W. STEPHEN WILSON

1. Introduction

Let all manifolds considered be *n*-dimensional, closed, compact, connected C^{∞} manifolds. Let $\tau_M : M \to BO$ be the classifying map for the stable tangent bundle of M. Recall that $H^*(BO)$ is a polynomial algebra on the universal Stiefel-Whitney classes, w_1, w_2, \cdots , where all coefficients are Z_2 . Let $S \subset H^*(BO)$, then define $I_n(S, \text{geom}) \subset H^*(BO)$ to be the ideal $\bigcap_M \ker \tau_M^*$ where the intersection is taken over all *n*-dimensional manifolds with $S \subset \ker \tau_M^*$. Let H be an *n*-dimensional Poincaré algebra. There is a unique right-left A-homomorphism $\tau_H : H^*(BO) \to H$, A the Steenrod algebra (see Brown-Peterson [5, Lemma 5.1, p. 44]). Define $I_n(S, \text{ alg}) \subset H^*(BO)$ to be the ideal given by $\bigcap_H \ker \tau_H$ where H runs over all *n*-dimensional Poincaré algebras such that $\tau_H(S) = 0$.

For the cases $S = \emptyset$, $\{w_1\}$, $I_n(S, \text{geom})$ corresponds to the intersection of ker τ_M^* taken over all manifolds, and respectively, all oriented manifolds. For these two cases, Brown and Peterson show that $I_n(S, \text{geom}) = I_n(S, \text{alg})$ [5, Theorems 5.2 and 5.4, p. 45]. Clearly, one has $I_n(S, \text{alg}) \subset I_n(S, \text{geom})$ for all S. [5, p. 45] gives an example to show that equality does not always hold.

In this paper, the case where $S = \{w_1, w_2\}$ will be considered. $I_n(\{w_1, w_2\}, \text{geom})$ corresponds to the intersection of ker τ_M^* where M runs over all n-dimensional Spin manifolds.

Let $BO\langle k \rangle$ be the k - 1 connective covering over BO and $BO\langle k \rangle$ the connected Ω -spectrum with 0th term $BO\langle k \rangle$. For k = 0 and 2, the bottom cohomology classes of $BO\langle 0 \rangle$ and $BO\langle 2 \rangle$ induce maps

$$\eta: H_*(X, \operatorname{BO}\langle 0 \rangle) \to H_*(X) \text{ and } \gamma: H_*(X, \operatorname{BO}\langle 2 \rangle) \to H_{*-2}(X)$$

on the generalized homology [12]. In Section 2, the computation of $I_n(\{w_1, w_2\}, \text{geom})^q$ is reduced to a problem about the image of the maps η and γ for the space $X = K(Z_2, n - q)$. This reduction is a generalization to Spin of Brown-Peterson results for SO [5]. The major part of this paper is devoted to obtaining certain information about the image of η for $X = K(Z_2, 2)$. These results are stated in Section 2 and used there to prove that $I_n(\{w_1, w_2\}, \text{geom})$ is not equal to $I_n(\{w_1, w_2\}, \text{alg})$ in general. In particular, it will be shown that

 $w_7 \in I_9(\{w_1, w_2\}, \text{geom})^7$ but $w_7 \notin I_9(\{w_1, w_2\}, \text{alg})^7$.

Received October 31, 1970.