TOPOLOGIES IN LOCALLY COMPACT GROUPS II

BY

S. JANAKIRAMAN AND M. RAJAGOPALAN

Introduction

In this paper we study the partially ordered set of locally compact group topologies on a given abelian group. Our main interest is the cardinality of a given interval [a, b] in this set. We prove that $|[a, b]| \ge c$ or is finite. This generalises the results obtained in [4] and [5] and also answers a question raised in [5]. Our methods involve delicate ways of embedding \mathbb{R}^n in a compact group. These embedding theorems are given in Section 1. We have to study a relation \sim in the set of subgroups of a given torsion free abelian group. This notion resembles that of quasi-isomorphism used by Beaumont and Pierce [1]. This is done in Section 2. We make heavy use of the results proved in [4] and [5].

Notation. All groups considered in this paper are abelian. All topological spaces considered are Hausdorff. The notions and terminologies on topological groups are as in [3] in general. T denotes the circle group with usual topology and multiplication. If G is a topological group, we say G is T-free if T is not a topological summand of G. Similarly G is said to be Z-free if G does not have Z as an algebraic summand. If G is a group and a_1, a_2, \dots, a_n are elements of G then $[a_1, \dots, a_n]$ denotes the sub-group generated by a_1, a_2, \dots, a_n in G. Isomorphism (topological) of two groups (topological) G_1, G_2 is denoted by \approx .

Isomorphic embeddings of R^n into a compact abelian group G

LEMMA 1.1. Let H be a subgroup of $\mathbb{R}^n (n \ge 1)$. Let $\overline{H} = F \oplus V$ where V is a subspace of \mathbb{R}^n and F is a free group different from $\{0\}$. Then Z is a summand of H.

Proof. Follows from standard arguments and the structure of closed subgroups of \mathbb{R}^n .

LEMMA 1.2. Let \hat{G} be a torsion free group of rank $n \ (n \ge 1)$. Then \hat{G} can be embedded as a dense subgroup of \mathbb{R}^n by a group isomorphism if and only if \hat{G} is Z-free. When \hat{G} is Z-free, we can obtain such an embedding as follows: Choose a maximal independent set (a_1, \dots, a_n) in \hat{G} over the integers. Define a map

$$\boldsymbol{\phi_0}: \{a_1\,,\,\cdots\,,\,a_n\} \to R^n$$

arbitrarily except that the set $\{\phi_0(a_1), \cdots, \phi_0(a_n)\}$ generates \mathbb{R}^n over \mathbb{R} . Using

Received December 28, 1970.