COMPACT EXTREMAL OPERATORS

BY
Julien Hennefeld

1. Introduction

For X a Banach space, let $\mathscr{B}(X)$ denote the space of bounded linear operators and $\mathscr{C}(X)$ the space of compact linear operators. The identity of a Banach algebra is always an extreme point of its unit ball. See [1]. As a simple consequence, any unitary element is also extreme. Kadison [4] has shown that for X Hilbert space, the extreme points of the unit ball of $\mathscr{B}(X)$ are precisely the semiunitary operators (partial isometries such that either $T T^{*}=I$ or $T^{*} T=I$).

For X an arbitrary infinite dimensional Banach space, there is no reason to suspect that $\mathscr{C}(X)$ has many, if indeed any, extreme points in its unit ball. In the first place, $\mathscr{C}(X)$ does not contain any unitary operators. Moreover, the Krein-Millman theorem cannot be readily invoked to conjure up extreme points, since there are no known examples where $\mathscr{C}(X)$ is a conjugate space, and many examples where $\mathscr{C}(X)$ is known not to be a conjugate space. See [2]. Finally, it is known that, for X either Hilbert space or $c_{0}, \mathscr{C}(X)$ has no extreme points. See [5] for Hilbert space.

We present two results in this paper. First, we show that the unit ball of $\mathscr{C}\left(l^{p}\right)$ is the norm closed convex hull of its extreme points for $1 \leq p<\infty$ and $p \neq 2$. We do so by constructing extreme points which, like unitary operators use all the coordinates. For the bizarre James' space we construct very different extremal operators, not at all analogous to unitary operators.

2. I^{p} spaces

Lemma 2.1. Let $\left\{e_{i}\right\}$ be the standard basis for l^{p} with $2<p<\infty$. Suppose $T e_{j}=\sum_{i=1}^{\infty} a_{i} e_{i}$, with each $a_{i} \neq 0$ and $\left\|T e_{j}\right\|=1$; and that $T e_{k}$ is nonzero for some $k \neq j$. Then $\|T\|>1$.

Proof. Without loss of generality, we can assume that each $a_{i}>0$, since $\|T\|=\|V T\|$ where $V e_{i}=\left(\operatorname{sign} a_{i}\right) e_{i}$. Suppose $T e_{k}=\sum b_{i} e_{i}$. Note that $\left\|e_{j} \pm \lambda e_{k}\right\|^{p}=1+|\lambda|^{p}$. We will show that for λ sufficiently small, either $\sum\left|a_{i}+\lambda b_{i}\right|^{p}$ or $\sum\left|a_{i}-\lambda b_{i}\right|^{p}$ is greater than $1+|\lambda|^{p}$.

Suppose $0<|\lambda b|<a$. By applying Taylor's theorem to

$$
f(\lambda)=|a+\lambda b|^{p}+|a-\lambda b|^{p}
$$

we have

$$
\begin{aligned}
&|a+\lambda b|^{p}+|a-\lambda b|^{p} \\
& \quad \geq 2 a^{p}+\lambda^{2} \frac{1}{2}(p(p-1)) b^{2}\left[|a+\theta \lambda b|^{p-2}+|a-\theta \lambda b|^{p-2}\right]
\end{aligned}
$$

Received July 10, 1975.

