A CHARACTERIZATION OF $\operatorname{PSL}(4, q), q$ EVEN, $q>4$

BY
Peter J. Lambert ${ }^{1}$

1. Introduction

We prove the following result:
Theorem. Let G be a group with the same character table as $\operatorname{PSL}(4, q)$, q even, $q>4$. The $G \simeq \operatorname{PSL}(4, q)$.

The argument hinges on properties of G derived from the class algebra in Section 3 which, taken in conjunction with Suzuki's work on (C)-groups in [8] and [9], enable us to obtain three subgroups of G isomorphic to $\operatorname{SL}(2, q)$ satisfying the conditions of K. W. Phan's characterization of special linear groups in [7].

The theorem has already been proved by different methods when $q=2$ $\left(\operatorname{PSL}(4,2) \simeq A_{8} ;\right.$ see [4]) and when $q=4$ (see [6]). In the present proof, all results up to and including (6.1) can be obtained for the case $q=4$ with a little extra difficulty. But Phan's theorem in [7], which excludes the case $q=4$, is not so easily adaptable.

The reader is referred to Section 2 of [4] where techniques of obtaining group-theoretical information from a character table are discussed: results 2.1-2.8 in [4] will be used frequently in the present paper and will be referred to henceforth as A2.1-A2.8. Most of the notation is standard; if $g \in G$ then $o(g)$ denotes the order of g and if n is a positive integer then $\pi(n)$ denotes the set of primes dividing n.

2. Products of transvections in $S L(4, q)$

A transvection in $S L(4, q)$ is a conjugate of

$$
\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
1 & & & 1
\end{array}\right)
$$

The $q-1$ nonidentity elements in the center of the Sylow 2-subgroup

$$
\left\{\left(\begin{array}{llll}
1 & & & \\
* & 1 & & \\
* & * & 1 & \\
* & * & * & 1
\end{array}\right)\right\}
$$

Received November 19, 1975.
${ }^{1}$ The author's current address is 132 Eastholme Drive, York, England.

