THE ASYMPTOTIC BEHAVIOR OF THE PRINCIPAL EIGENVALUE OF SINGULARLY PERTURBED DEGENERATE ELLIPTIC OPERATORS¹

BY

Allen Devinatz and Avner Friedman

1. Introduction

Let

(1.1)
$$Lu \equiv \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i}$$

be an elliptic operator in a bounded domain Ω , degenerating on $\partial \Omega$ in such a way that

(1.2)
$$\sum_{i,j=1}^{n} a_{ij} v_i v_j = 0 \quad \text{on } \partial \Omega,$$

(1.3)
$$\sum_{i=1}^{n} \left(b_i - \sum_{j=1}^{n} \frac{\partial a_{ij}}{\partial x_j} \right) v_i \ge 0 \quad \text{on } \partial \Omega,$$

where $v = (v_1, ..., v_n)$ is the inward normal on $\partial \Omega$. In general, the Dirichlet problem for this operator has no solution since the corresponding solution of the stochastic differential system

$$d\xi_i = \sum_{j=1}^n \sigma_{ij}(\xi) \ dw_j + \ b_i(\xi) \ dt,$$

where $\frac{1}{2} \sum_{k=1}^{n} \sigma_{ik} \sigma_{kj} = a_{ij}$ does not exit from Ω in finite time (see, for example, [4] for more details).

For any $\varepsilon > 0$, consider the elliptic operator $\varepsilon \Delta + L$ and denote by λ_{ε} the principal eigenvalue; i.e., λ_{ε} is the smallest real number such that there exists a solution u_{ε} for the problem

(1.4)
$$\varepsilon \Delta u_{\varepsilon} + L u_{\varepsilon} = -\lambda_{\varepsilon} u_{\varepsilon} \text{ in } \Omega, \quad u_{\varepsilon} = 0 \text{ on } \partial \Omega.$$

As is well known such an eigenvalue always exists. We are concerned in this paper with the asymptotic behavior of λ_{ε} as $\varepsilon \to 0$.

Several earlier papers consider the problem of estimating λ_{ε} when λ_{ε} is the principal eigenvalue for the operator

(1.5)
$$\varepsilon \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i \frac{\partial}{\partial x_i}$$

Copyright © Board of Trustees, University of Illinois

Received May 27, 1976.

¹ Research partially supported by the National Science Foundation.