RECURSION IN THE EXTENDED SUPERJUMP

BY

PHILIP LAVORI¹

The history of the investigation into recursion in the superjump is a long and complicated one, with many people contributing pieces of information. The final word on the type three object defined first by R. O. Gandy [3],

 $S(F, \alpha, e) \simeq \begin{cases} 0 & \text{if } \{e\}(\alpha, F) \text{ converges} \\ 1 & \text{otherwise,} \end{cases}$

was had by Leo Harrington [4], [5] after Peter Aczel and Peter Hinman obtained partial results. The results obtained were:

(A) The first ordinal not recursive in the superjump, ω_1^s , equals ρ_0 , the first recursively Mahlo ordinal.

(B) 1-sc $S = L\rho_0 \cap 2^{\omega}$ where $L\rho_0$ is the collection of sets constructible before ρ_0 .

The basic interest in the superjump stems from the fact that, unlike the *normal* type three objects, which involve ineluctibly uncountable computations, the superjump applied to a type two object can be viewed as a countable computation. This can be seen more clearly by replacing the superjump by the equivalent

$$\mathscr{E}(F) \simeq \begin{cases} 0 & \text{if } \exists \alpha \varepsilon \text{ 1-sc } F[F(\alpha) = 0] \\ 1 & \text{otherwise.} \end{cases}$$

Then, of course, we see that the value of \mathscr{E} applied to F only depends on 1-sc F. The fact that S (and \mathscr{E}) are strictly weaker than ³E makes it impossible to apply the techniques of Shoenfield and Sacks without alteration, and it is the reason that the analysis of recursion based S has been so difficult.

After result (B) above, the situation remained unsatisfactory, because of the fact that 1-env $S = \Pi_2^1$. As has been noted by Harrington, and others, this fact arises because some computations from the superjump may diverge for "the wrong reasons." For example, if a λ -term which defines a partial type two object \vec{F} arises and is taken as an argument for S, the computation will diverge because \vec{F} is not total, even though \vec{F} may be defined at all "relevant" objects, for example, on 1-sc \vec{F} .

Copyright © Board of Trustees, University of Illinois

Received March 15, 1976.

¹ This paper is taken from the author's doctoral dissertation, Cornell University, August 1974.