ON A PROBLEM OF STOLZENBERG IN POLYNOMIAL CONVEXITY

BY

H. ALEXANDER

1. Introduction

The following problem has been posed by G. Stolzenberg [3, p. 350, Problem 9]: Let \mathscr{A} be a uniform algebra on the unit circle T which is generated by a finite number of functions of constant unit modulus. Show that $\sigma(\mathscr{A})\setminus T$ has the structure of a (possibly empty) one-dimensional analytic space, where $\sigma(\mathscr{A})$ is the spectrum of the Banach algebra \mathscr{A} . By using the finite set of n, say, unimodular generators to imbed T into the torus T^n , one can reformulate the problem in a more geometric setting as that of showing, for a Jordan curve Γ contained in T^n , that $\widehat{\Gamma}\setminus\Gamma$ is a (possibly empty) one-dimensional analytic subset of $\mathbb{C}^n\setminus\Gamma$, where \wedge denotes the polynomially convex hull. Our first result includes a solution to this problem as a special case.

We will say that a compact subset Z of T^n is an AC set (a union of a set of Arcs with a polynomially Convex set) provided that there is a compact polynomially convex set $K \subseteq Z$ such that $Z \setminus K$ has the structure of an arc at each of its points. By the latter we mean that for each $p \in Z \setminus K$ there exists a homeomorphism of a neighborhood of p in $Z \setminus K$ with some open interval on the real axis.

THEOREM 1. Let X be a compact subset of T^n which is contained in an AC set Z. Then $\hat{X} \setminus X$ is a (possibly empty) analytic subset of pure dimension one in $\mathbb{C}^n \setminus X$. Moreover, $\hat{X} \setminus X$ is algebraic, in the sense that there exists a global algebraic subvariety B of \mathbb{C}^n such that $\hat{X} \setminus X = B \cap (\overline{U^n} \setminus T^n)$, and $(\hat{X} \setminus X)^- \cap T^n$ is a union of real analytic curves contained in X.

Results of this type were first obtained by Wermer [10], Bishop [4], and Stolzenberg [8], under smoothness restrictions, for real curves. In Theorem 1, no smoothness is assumed, but rather there is the geometric hypothesis that X lies in the torus. It is interesting to note, however, that the boundary curves of the hull are shown, a posteriori, by the application of a reflection principle, to be in fact real analytic.

For X a Jordan curve, we can, for the theorem, take Z = X with K empty. When X is a Jordan arc, take Z = X with K the set of two endpoints, to conclude that $\hat{X} \setminus X$ is either analytic or empty. From the argument principle (cf. [8], [11]), it follows that the latter must be the case; i.e., X is polynomially convex. Thus we recover the following result of Stolzenberg [7].

Received August 20, 1976.

Copyright © Board of Trustees, University of Illinois