ON THE DERIVATIVE OF A POLYNOMIAL

BY

N. K. GOVIL, Q. I. RAHMAN AND G. SCHMEISSER

1. Introduction and statement of results

It is well known that if $p_n(z) = \sum_{\nu=0}^n c_{\nu} z^{\nu}$ is a polynomial of degree at most *n*, then (for references see [16])

(1)
$$\max_{|z|=1} |p'_n(z)| \le n \max_{|z|=1} |p_n(z)|,$$

where equality holds if and only if $p_n(z)$ is a constant multiple of z^n . If $p_n(z) \neq 0$ in |z| < 1, then [11], [5], [2]

(2)
$$\max_{|z|=1} |p'_n(z)| \leq \frac{n}{2} \max_{|z|=1} |p_n(z)|.$$

On the other hand, we have [18]

(3)
$$\max_{|z|=1} |p'_n(z)| \ge \frac{n}{2} \max_{|z|=1} |p_n(z)|$$

if $p_n(z)$ is a polynomial of degree *n* having all its zeros in $|z| \le 1$. Hence in (2) (as well as in (3)) equality holds for all polynomials $p_n(z)$ of degree *n* which have all their zeros on |z| = 1.

Inequality (2) can be replaced [12], [9] by

(4)
$$\max_{|z|=1} |p'_n(z)| \le \frac{n}{1+K} \max_{|z|=1} |p_n(z)|$$

if $p_n(z) \neq 0$ in |z| < K, where K > 1. Here, we have equality if

(5)
$$p_n(z) = c_0 \left\{ 1 + \binom{n}{1} \frac{1}{K} z e^{i\alpha} + \dots + \binom{n}{\nu} \frac{1}{K^{\nu}} (z e^{i\alpha})^n + \dots + \frac{1}{K^n} (z e^{i\alpha})^n \right\}.$$

Besides, it can be shown that if a polynomial $p_n(z)$ of degree *n* having all its zeros in $|z| \ge K > 1$ is not of this form, then strict inequality holds in (4). In other words, there is equality in (4) for $p_n(z) = \sum_{\nu=0}^n c_{\nu} z^{\nu} \ne 0$ in |z| < K (K > 1) if and only if $|c_1/c_0| = n/K$.

Now let us consider the following problem. Given that the polynomial

$$f_n(z) = \sum_{\nu=1}^n a_{\nu} z^{\nu}$$

is univalent in |z| < 1 how large can $(\max_{|z|=1} |f'_n(z)|)/\max_{|z|=1} |f_n(z)|$ be? We may apply (4) to the polynomial $p_{n-1}(z) = f_n(z)/z = :\sum_{\nu=0}^{n-1} c_{\nu} z^{\nu}$ which is of

Received November 29, 1977.

^{© 1979} by the Board of Trustees of the University of Illinois Manufactured in the United States of America