ON THE DERIVATIVE OF A POLYNOMIAL

BY

N. K. Govil, Q. I. Rahman and G. Schmeisser

1. Introduction and statement of results

It is well known that if $p_{n}(z)=\sum_{\nu=0}^{n} c_{\nu} z^{\nu}$ is a polynomial of degree at most n, then (for references see [16])

$$
\begin{equation*}
\max _{|z|=1}\left|p_{n}^{\prime}(z)\right| \leq n \max _{|z|=1}\left|p_{n}(z)\right| \tag{1}
\end{equation*}
$$

where equality holds if and only if $p_{n}(z)$ is a constant multiple of z^{n}. If $p_{n}(z) \neq 0$ in $|z|<1$, then [11], [5], [2]

$$
\begin{equation*}
\max _{|z|=1}\left|p_{n}^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}\left|p_{n}(z)\right| \tag{2}
\end{equation*}
$$

On the other hand, we have [18]

$$
\begin{equation*}
\max _{|z|=1}\left|p_{n}^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}\left|p_{n}(z)\right| \tag{3}
\end{equation*}
$$

if $p_{n}(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$. Hence in (2) (as well as in (3)) equality holds for all polynomials $p_{n}(z)$ of degree n which have all their zeros on $|z|=1$.

Inequality (2) can be replaced [12], [9] by

$$
\begin{equation*}
\max _{|z|=1}\left|p_{n}^{\prime}(z)\right| \leq \frac{n}{1+K} \max _{|z|=1}\left|p_{n}(z)\right| \tag{4}
\end{equation*}
$$

if $p_{n}(z) \neq 0$ in $|z|<K$, where $K>1$. Here, we have equality if

$$
\begin{equation*}
p_{n}(z)=c_{0}\left\{1+\binom{n}{1} \frac{1}{K} z e^{i \alpha}+\cdots+\binom{n}{v} \frac{1}{K^{\nu}}\left(z e^{i \alpha}\right)^{n}+\cdots+\frac{1}{K^{n}}\left(z e^{i \alpha}\right)^{n}\right\} . \tag{5}
\end{equation*}
$$

Besides, it can be shown that if a polynomial $p_{n}(z)$ of degree n having all its zeros in $|z| \geq K>1$ is not of this form, then strict inequality holds in (4). In other words, there is equality in (4) for $p_{n}(z)=\sum_{v=0}^{n} c_{\nu} z^{\nu} \neq 0$ in $|z|<K$ $(K>1)$ if and only if $\left|c_{1} / c_{0}\right|=n / K$.

Now let us consider the following problem. Given that the polynomial

$$
f_{n}(z)=\sum_{v=1}^{n} a_{\nu} z^{\nu}
$$

is univalent in $|z|<1$ how large can $\left(\max _{|z|=1}\left|f_{n}^{\prime}(z)\right|\right) / \max _{\left.\right|_{z \mid=1}}\left|f_{n}(z)\right|$ be? We may apply (4) to the polynomial $p_{n-1}(z)=f_{n}(z) / z=: \sum_{\nu=0}^{n-1} c_{\nu} z^{\nu}$ which is of

