TOEPLITZ OPERATORS ON THE BALL WITH PIECEWISE CONTINUOUS SYMBOL

BY GERARD McDonald

1. Introduction

Let B denote the open unit ball in \mathbb{C}^n and let $A^2(B)$ denote the Bergman space of square-integrable holomorphic functions on B. The Toeplitz operator with symbol φ , T_{φ} , is defined by $T_{\varphi}f = P(\varphi f)$, $f \in A^2(B)$, where φ is in $L^{\infty}(B)$, and P is the orthogonal projection of $L^2(B)$ onto $A^2(B)$. Let E be a (2n-1)-dimensional real hyperplane in \mathbb{C}^n intersecting B. The set $B \setminus E$ then consists of two components, which we will label B_+ and B_- . We define

$$HC(B) = \{ \varphi \in L^{\infty}(B) : \varphi \mid B_{+}, \varphi \mid B_{-} \text{ are uniformly continuous} \}.$$

The main purpose of this paper is to compute the essential spectrum of T_{φ} for φ in HC(B), and to show, in particular, that it is connected.

Note that HC(B) is a closed subalgebra of $L^{\infty}(B)$, and that we can write

$$HC(B) = \{\langle f, g \rangle : f \in C(\bar{B}_+), g \in C(\bar{B}_-)\}.$$

Our interest in HC(B) stems from the fact that in many ways it seems like a reasonable analogue of the algebra PC on the unit circle T. Recall that PC is the closed subalgebra of $L^{\infty}(T)$ consisting of piecewise continuous functions on T, and that $\varphi^{\#}$ is the curve obtained by joining left- and right-hand limits of φ by a line segment at points of discontinuity. For details, and a proof of the following, see [3, pp. 20–23].

PROPOSITION 1.1. If φ and ψ are in PC, then:

- (i) $T_{\varphi}T_{\psi}-T_{\psi}T_{\varphi}$ is compact.
- (ii) T_{φ} is Fredholm if and only if $\varphi^{\#}$ does not pass through the origin.

Here T_{φ} denotes the Toeplitz operator acting on the Hardy space H^2 on the circle.

We will show that this proposition remains essentially true for φ and ψ in HC(B). We point out that 1.1(i) depends on the fact that we can approach a point of discontinuity of a function from only two directions on T. This property is retained by the functions in HC(B). For suppose λ is in E and $\varphi = \langle f, g \rangle$ is in HC(B). If we approach λ through B_+ , then $\lim \varphi(z) = f(\lambda)$, and if we approach λ through B_- , then $\lim \varphi(z) = g(\lambda)$.

Received October 25, 1977.

¹ This research was supported in part by a National Science Foundation grant.