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Introduction

A complete intersection of complex dimension n is a nonsingular subvariety
of CP" + which is the transverse intersection of exactly r nonsingular hypersur-
faces. In this paper we compute the rational homotopy groups of all complete
intersections of complex dimension greater than one. Formality and the struc-
ture of the rational cohomology ring make this computation possible. In fact,
our computation is valid for any formal space whose rational cohomology ring
looks like that of a complete intersection.
Any nonsingular projective algebraic variety is a compact K/ihler manifold.

If it is also a complete intersection of complex dimension greater than one, then
it is simply connected. By Deligne, Griffiths, Morgan, and Sullivan [2], all the
rational homotopy invariants of a simply connected compact Kfihler manifold
are a formal consequence of the rational cohomology ring. Such a space is
called formal. (Actually, [2] shows only that the real homotopy invariants are a
formal consequence of the real cohomology ring, but real formality implies
rational formality [3], [6], [12].) Equivalently, the rational homotopy invariants
of a formal space are a formal consequence of the rational homology coalge-
bra. Theorem 2 below is a precise formulation of this principle for the rational
homotopy groups.
The rational cohomology ring of a complete intersection is not too com-

plicated. Except for powers of the K/ihler form, the rational cohomology ring is
connected up to the middle dimension [Hirzebruch, 4, Theorem 22.1.2].
Poincar6 duality implies that the cup product makes the middle dimensional
cohomology group into a nondegenerate bilinear form.

Let V be a complete intersection of complex dimension n. The rational
homotopy groups r(V,)(R) Q are complicated enough so that some algebraic
structure is needed to describe them. This is given by the Samelson product
[13]. More precisely, 7gk(Vn) () Q is isomorphic to 7gk_ l(fVn) () Q and the Samel-
son product gives (fV)(R) Q the structure of a graded Lie algebra.

If n is greater than one, Vn has the same rational homotopy type as X w e2n

where X is a bouquet of a single copy of CP and copies of S and where
: $2,

_
X is the attaching map for the top cell e2n. Let he be the number of

copies of S which occur in X. If h0 is nonzero, then Theorem I below may be
expressed as follows: The rational homotopy Lie algebra of fV is the rational
homotopy Lie algebra of fX modulo the ideal generated by the homotopy
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