LACUNARY SPHERICAL MEANS

BY CALIXTO P. CALDERÓN¹

0. Introduction and statement of results

Professor E. M. Stein introduced in [4] (see also [6]) the maximal function

(0.1)
$$S(f)(x) = \sup_{\varepsilon > 0} \left| \int_{\Sigma} f(x - \varepsilon \alpha) \, d\sigma \right|$$

where f is any Borel measurable function defined on \mathbb{R}^n , α is a point on the unit sphere Σ of \mathbb{R}^n and $d\sigma$ stands for its "area" element. In the above paper Professor Stein proves the following result: If $n \ge 3$ and p > n/(n-1), then

(0.2)
$$||S(f)||_p < C_p ||f||_p.$$

If $p \le n/(n-1)$ and $n \ge 2$ the result is false; what happens for n = 2 and p > 2 remains an open problem. Throughout this paper, we shall be concerned with the lacunary version of Stein's theorem. Define

(0.3)
$$\sigma(f)(x) = \sup_{k>0} \left| \int_{\Sigma} f(x-2^{-k}\alpha) \, d\sigma \right|$$

where k takes all the natural values. We have the following result:

0.4. THEOREM. If $n \ge 2$, p > 1 and f is Borel measurable in \mathbb{R}^n then

(i)
$$\|\sigma(f)\|_p < C_p \|f\|_p, p > 1.$$

Moreover, we have the following inequality "near" L^1 : If Q is a cube in \mathbb{R}^n and $\lambda > 1/|Q|$ then

(ii)
$$|Q \cap E(\sigma(f) > \lambda)| < \frac{C_1}{\lambda} |Q|$$

 $+ C_2 \frac{|\log \lambda|}{\lambda} \int_{\mathbb{T}^n} |f| [1 + (\log^+ |f|) \log^+ \log^+ |f|]$

The constants C_1 and C_2 depend on n and Q but not on λ or f.

In particular, (ii) implies differentiability a.e. by lacunary spherical means in the Orlicz Class $L(\log^+ L) \log^+ \log^+ L$. Professor S. Wainger communicated to me that part (i) of the above theorem has been obtained also by R. R. Coifman and G. Weiss.

¹ The author has been partially supported by a National Science Foundation grant.

C 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

dx.

Received January 16, 1978.