## PLANAR SURFACE IMMERSIONS

by Louis H. Kauffman

## Introduction

In this paper immersions of surfaces with boundary into the plane,  $\mathbf{R}^2$ , will be classified up to an equivalence relation called image homotopy. When two immersions are image homotopic, there is a smooth deformation through immersion images of one image to the other. This deformation may be drawn or visualized. It gives the appearance of a motion of the immersion in time. Before proceeding further, the reader might enjoy viewing the long image homotopy shown in Figure 3. This image homotopy is an example of mod-2 planar phenomena that we shall deal with in greater detail.

Planar surface immersions are a mixture of integral and mod-2 phenomena. For example, there are infinitely many image homotopy classes of immersions of a once punctured torus, but only *two* image homotopy classes for a surface of genus greater than one having a single boundary component. In the latter case, these two immersions are distinguished by a mod-2 quadratic form just as in [KB]. In fact, our results are quite similar to those of [KB], where immersions into the sphere,  $S^2$ , are classified up to image homotopy. Except for the use of quadratic forms, we do not assume familiarity with [KB]. The paper is organized as follows:

In Section 1 image homotopy is discussed and defined. Proposition 1.6 shows that  $\mathcal{I}(N) \simeq \mathcal{R}(N)/\mathcal{M}(N)$  where  $\mathcal{I}(N)$  denotes image homotopy classes of immersions of N,  $\mathcal{R}$  denotes regular homotopy, and  $\mathcal{M}(N)$  is the mapping class group of N (acting on  $\mathcal{R}(N)$  by composition).

Section 2 discusses the role of curves on the surface. The Whitney-Graustein Theorem [W] is recalled and used to compute  $\mathcal{R}(N)$ . A boundary invariant, B(f), of an immersion  $f: N \to \mathbb{R}^2$  is defined in terms of the boundary curves of N. Proposition 2.3 computes  $\mathcal{I}(N)$  for a k-holed disk in terms of the boundary invariant.

Section 3 discusses the generators of the mapping class group  $\mathcal{M}(N)$  and then considers three important examples: (1) If N = T, a punctured torus, then  $\mathcal{M}(N) \cong SL(2, \mathbb{Z})$  and  $\mathcal{I}(N) \simeq \mathbb{Z}^+$ . (2) If N = T # A (a torus with two holes), then the extra boundary component acts as a catalyst to reduce the toral part of the immersion modulo two. (3) If N = T # T, a once-punctured double torus, then  $\mathcal{I}(N)$  contains no more than two elements. These examples reflect the way particular sorts of diffeomorphisms of N act on

© 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 13, 1978.