ON THE DENSITY OF SEQUENCE $\left\{n_{k} \xi\right\}$

BY
A. D. Pollington

Introduction

In his paper Problems and results in Diophantine approximations II which appeared in [2] Erdös asked the following:

Given a sequence of integers $n_{1}<n_{2}<n_{2} \cdots$ satisfying $n_{k+1} / n_{k} \geq \alpha>1$, $k=1,2, \ldots$, is it true that there always exists an irrational ξ for which the sequence $\left\{n_{k} \xi\right\}$ is not everywhere dense?

Here $\{x\}$ denotes the fractional part of x.
Strzelecki [5] has shown that if $\alpha \geq(5)^{1 / 3}$, and $\left(t_{k}\right)$ is a sequence of positive real numbers, not necessarily integers, with $t_{k+1} / t_{k}>\alpha$ then there is a ξ such that $\left\{t_{k} \xi\right\} \in[\beta, 1-\beta], k=1,2, \ldots$, for some $\beta>0$.

It is the purpose of this paper to provide a complete answer to the question of Erdös by providing the following.
Theorem. Let $\left(t_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
q_{n}=t_{n+1} / t_{n} \geq \alpha>1 \text { for } n=1,2, \ldots \tag{1}
\end{equation*}
$$

and let s_{0} be a real number $0<s_{0}<1$ then there exists a real number $\beta=\beta\left(\alpha, s_{0}\right)>0$ and a set T of Hausdorff dimension at least s_{0} such that if $\xi \in T$ then

$$
\begin{equation*}
\left\{t_{k} \xi\right\} \in[\beta, 1-\beta] \quad \text { for } \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

We have the following immediate corollary.
Corollary. The set of numbers ξ such that $\left\{t_{k} \xi\right\}$ is not dense in the unit interval has Hausdorff dimension 1.

A similar result has recently been obtained independently by B. de Mathan [3], [4].

Proof of the Theorem. We note that it is sufficient to prove the theorem under the additional restriction that $q_{n} \leq \alpha^{2}$, for we can form a new sequence $\left(t_{n}^{\prime}\right)$ from $\left(t_{n}\right)$ by introducing new terms between t_{k} and t_{k+1} if $t_{\mathrm{k}+1} / t_{\mathrm{k}}>\alpha^{2}$, so that $\alpha \leq t_{n+1}^{\prime} / t_{n}^{\prime} \leq \alpha^{2}, n=1,2, \ldots$. Obviously if the assertion of the theorem holds for some sequence $\left(t_{n}^{\prime}\right)$ it holds for any sub-sequence $\left(t_{n}\right)$ of $\left(t_{n}^{\prime}\right)$.

