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N-PROJECTIVE SPACES
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1. Introduction

By a space we shall always mean a compact Hausdorff space, a map shall
always be a continuous map between spaces, and a diagram shall always be a
commutative diagram of spaces and maps. A space X is projective if the follow-
ing lifting property holds. Given spaces Y and Z and maps q:X Z and
f: Y Z withfonto, there exists a map q: X Y satisfying q f ft. In other
words, a solution q exists in any diagram

We call q a lifting of 4) overf A well known theorem of Gleason characterizes
the projective spaces as the extremally disconnected spaces [5][2, p. 51]. A
space is extremally disconnected if open sets have open closures.
The weight wt (X) of a space X is the least cardinal of a base of open sets. Let

N be an infinite cardinal. We shall say that a space X is N-projective if a
solution q exists in diagram (1) whenever the additional condition wt (Y) < N
is satisfied. Since f is onto, wt (Z) < N is also implied; but note that wt (X) is
not mentioned. The purpose of this paper is to give the following characteriza-
tion of N-projective spaces.

THEOREM 1. For N > No, a compact Hausdorff space X is N-projective iff it
is a totally disconnected Fs-space.

The following definitions are more or less standard; we follow the conven-
tions of [2]. A cozero set in a space is the complement of the set of zeros of a
continuous real valued function, and a set is N-open if it is the union of fewer
than N cozero sets. A space is an F-space if any two disjoint N-open sets have
disjoint closures. An Fo-Space is called an F-space. An Nl-open set is a cozero
set, so an F-space is also an Fl-space. Any space X is N0-projective, and we
shall ignore this trivial case from now on.
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