8-PROJECTIVE SPACES

BY

CHARLES W. NEVILLE AND STUART P. LLOYD

1. Introduction

By a space we shall always mean a compact Hausdorff space, a map shall always be a continuous map between spaces, and a diagram shall always be a commutative diagram of spaces and maps. A space X is projective if the following lifting property holds. Given spaces Y and Z and maps $\phi: X \to Z$ and $f: Y \to Z$ with f onto, there exists a map $\psi: X \to Y$ satisfying $\phi = f \circ \psi$. In other words, a solution ψ exists in any diagram

We call ψ a lifting of ϕ over f. A well known theorem of Gleason characterizes the projective spaces as the extremally disconnected spaces [5][2, p. 51]. A space is extremally disconnected if open sets have open closures.

The weight wt (X) of a space X is the least cardinal of a base of open sets. Let \aleph be an infinite cardinal. We shall say that a space X is \aleph -projective if a solution ψ exists in diagram (1) whenever the additional condition wt $(Y) < \aleph$ is satisfied. Since f is onto, wt $(Z) < \aleph$ is also implied; but note that wt (X) is not mentioned. The purpose of this paper is to give the following characterization of \aleph -projective spaces.

THEOREM 1. For $\aleph > \aleph_0$, a compact Hausdorff space X is \aleph -projective iff it is a totally disconnected F_{\aleph} -space.

The following definitions are more or less standard; we follow the conventions of [2]. A cozero set in a space is the complement of the set of zeros of a continuous real valued function, and a set is \aleph -open if it is the union of fewer than \aleph cozero sets. A space is an F_{\aleph} -space if any two disjoint \aleph -open sets have disjoint closures. An F_{\aleph_0} -space is called an F-space. An \aleph_1 -open set is a cozero set, so an F-space is also an F_{\aleph_1} -space. Any space X is \aleph_0 -projective, and we shall ignore this trivial case from now on.

Received April 16, 1979.