EQUIVARIANT BUNDLES

BY
R. K. Lashof

We develop a theory of equivariant bundles, i.e., bundles with a compact Lie group G of automorphisms. Equivariant vector bundles were discussed by Wasserman [9] and Atiyah-Segal [8]; Bierstone [1] considered smooth equivariant bundles; and in [6] we sketched the general theory of equivariant bundles with a finite group G of automorphisms. However, general equivariant bundles are needed in equivariant smoothing theory [5]; and unfortunately, none of the above expositions generalizes without important modifications. As in [6], we generalize the Dold numerable bundle theory [3] to the equivariant case.

1. Numerable G-bundles

Let $p: E \rightarrow X$ be a locally trivial bundle with fibre F and structure group A. We call p a G-bundle, or more precisely a G - A bundle if E and X are G-spaces, p is a G-map, and G acts on E through A-bundle maps. Two $G-A$ bundles over X are called G - A equivalent if they are A-equivalent via a G-equivariant map.

Example 1. A G-vector bundle [8] of dimension n is a $G-L_{n}$ bundle, L_{n} the group of linear isomorphisms of R^{n}.

If $p: E \rightarrow X$ is a $G-A$ bundle, the action of G induces an action of G on the associated principal A-bundle P, again through A-bundle maps. That is, G acts on the left and A acts on the right of P and these actions commute. Conversely, if $p: P \rightarrow X$ is a principal $G-A$ bundle and A acts on the left of F, then $E=P \times{ }_{A} F$ is a $G-A$ bundle with fibre F. Two $G-A$ bundles with fibre F are $G-A$ equivalent if and only if their associated principal $G-A$ bundles are $G-A$ equivalent.

In order to prove a covering homotopy property or to produce a classifying space for ordinary bundles, the local triviality condition is essential. Bierstone [1] pointed out that for equivariant bundles one needs a G-local triviality condition for the same purpose. Before defining this condition we recall the local structure of a completely regular G-space X (see [2]): For any $x \in X$ there is a G_{x}-invariant subspace V_{x} containing x, called a slice through x, such that

$$
\mu: G \times_{G_{x}} V_{x} \rightarrow X, \quad \mu[g, v]=g v
$$

Received May 22, 1980.
${ }^{1}$ By abuse of notation, we shall write $E_{0}=E / X$.

