SETS OF PRIMES DETERMINED BY SYSTEMS OF POLYNOMIAL CONGRUENCES

BY
J. C. Lagarias

1. Introduction

Fermat considered the problem of characterizing the set Σ_{Q} of primes p for which

$$
\begin{equation*}
Q(x, y)=a x^{2}+b x y+c y^{2}= \pm p \tag{1.1}
\end{equation*}
$$

for some integers x, y. In a letter to Mersenne dated December 26, 1640, he asserted that the form $x^{2}+y^{2}$ represented all primes $p \equiv 1(\bmod 4)$ and no primes $p \equiv 3(\bmod 4)$. In a letter to Pascal written in 1654 , he asserted that for the forms $x^{2}+2 y^{2}, x^{2}+3 y^{2}$ the sets Σ_{Q} consisted of all primes in certain arithmetic progressions. He conjectured the same for $x^{2}+5 y^{2}$ (see [7, p. 3]). It is plausible that Fermat had proofs of his assertions, although he never revealed them [17, p. 104]. Some of Fermat's assertions were subsequently proved by Euler in 1761. Euler had already observed that for other forms, e.g., $x^{2}+11 y^{2}$, there was no obvious characterization of the set Σ_{Q} in terms of primes in arithmetic progressions [7, p. 3].

The problem of characterizing the sets Σ_{Q} motivated many subsequent investigations. Gauss considered two binary quadratic forms Q_{1} and Q_{2} to be equivalent if one can be obtained from the other by a unimodular integer transformation of variables. Equivalent forms represent the same sets of primes. A form can represent infinitely many primes only if it is primitive, i.e., $(a, b, c)=1$. The set of all primitive forms having the same discriminant $D=b^{2}-4 a c$ fall into a finite set of equivalence classes, which we denote $\mathrm{Cl}(\mathrm{D})$. Gauss developed a theory of genera which restricted the values that could be represented by a given binary quadratic form to be those for which certain auxiliary quadratic congruences were solvable or unsolvable in specified ways. For example, for $D=-164=-4.41$, there are eight classes in $\mathrm{Cl}(D)$. There are two auxiliary quadratic congruences:

$$
\begin{align*}
& \text { (A) } x_{1}^{2} \equiv 41(\bmod p) \tag{1.2}\\
& \text { (B) } x_{2}^{2} \equiv-1(\bmod p) \tag{1.3}
\end{align*}
$$

Received April 20, 1982.

