SETS OF PRIMES DETERMINED BY SYSTEMS OF POLYNOMIAL CONGRUENCES

BY

J. C. LAGARIAS

1. Introduction

Fermat considered the problem of characterizing the set Σ_Q of primes p for which

$$Q(x, y) = ax^{2} + bxy + cy^{2} = \pm p$$
(1.1)

for some integers x, y. In a letter to Mersenne dated December 26, 1640, he asserted that the form $x^2 + y^2$ represented all primes $p \equiv 1 \pmod{4}$ and no primes $p \equiv 3 \pmod{4}$. In a letter to Pascal written in 1654, he asserted that for the forms $x^2 + 2y^2$, $x^2 + 3y^2$ the sets Σ_Q consisted of all primes in certain arithmetic progressions. He conjectured the same for $x^2 + 5y^2$ (see [7, p. 3]). It is plausible that Fermat had proofs of his assertions, although he never revealed them [17, p. 104]. Some of Fermat's assertions were subsequently proved by Euler in 1761. Euler had already observed that for other forms, e.g., $x^2 + 11y^2$, there was no obvious characterization of the set Σ_Q in terms of primes in arithmetic progressions [7, p. 3].

The problem of characterizing the sets Σ_Q motivated many subsequent investigations. Gauss considered two binary quadratic forms Q_1 and Q_2 to be equivalent if one can be obtained from the other by a unimodular integer transformation of variables. Equivalent forms represent the same sets of primes. A form can represent infinitely many primes only if it is *primitive*, i.e., (a, b, c) = 1. The set of all primitive forms having the same *discriminant* $D = b^2 - 4ac$ fall into a finite set of equivalence classes, which we denote Cl(D). Gauss developed a theory of *genera* which restricted the values that could be represented by a given binary quadratic form to be those for which certain auxiliary quadratic congruences were solvable or unsolvable in specified ways. For example, for D = -164 = -4.41, there are eight classes in Cl(D). There are two auxiliary quadratic congruences:

(A)
$$x_1^2 \equiv 41 \pmod{p}$$
, (1.2)

(B)
$$x_2^2 \equiv -1 \pmod{p}$$
. (1.3)

Received April 20, 1982.

^{© 1983} by the Board of Trustees of the University of Illinois Manufactured in the United States of America