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1. Introduction

Fermat considered the problem of characterizing the set Ea of primes p
for which

Q(x, y) axE + bxy + cyE= +_p (1.1)

for some integers x, y. In a letter to Mersenne dated December 26, 1640,
he asserted that the form xE + yE represented all primes p -= 1 (mod 4)
and no primes p -= 3 (mod 4). In a letter to Pascal written in 1654, he
asserted that for the forms xE + 2yE, xE + 3yE the sets E consisted of all
primes in certain arithmetic progressions. He conjectured the same for
xE + 5yE (see [7, p. 3]). It is plausible that Fermat had proofs of his
assertions, although he never revealed them [17, p. 104]. Some of Fermat’s
assertions were subsequently proved by Euler in 1761. Euler had already
observed that for other forms, e.g., xE + 1 lyE, there was no obvious char-
acterization of the set E in terms of primes in arithmetic progressions [7,
p. 3].
The problem of characterizing the sets e motivated many subsequent

investigations. Gauss considered two binary quadratic forms Q1 and Q2 to
be equivalent if one can be obtained from the other by a unimodular integer
transformation of variables. Equivalent forms represent the same sets of
primes. A form can represent infinitely many primes only if it is primitive,
i.e., (a, b, c) 1. The set of all primitive forms having the same discriminant
D bE 4ac fall into a finite set of equivalence classes, which we denote
Cl(D). Gauss developed a theory of genera which restricted the values that
could be represented by a given binary quadratic form to be those for which
certain auxiliary quadratic congruences were solvable or unsolvable in spec-
ified ways. For example, for D -164 -4.41, there are eight classes
in CI(D). There are two auxiliary quadratic congruences:

(A) x--41 (modp), (1.2)

(B) x-- 1 (mod p). (1.3)
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