ON NON-NORMAL SUBGROUPS OF GL, (A) WHICH ARE NORMALIZED BY ELEMENTARY MATRICES

BY

A. W. MASON

1. Introduction

Let A be a ring with identity, q a (two-sided) ideal in A (possibly q = A) and let $f: GL_n(A) \rightarrow GL_n(A/q)$ be the natural homomorphism. We put

 $G = GL_n(A)$, $G(\mathbf{q}) = \operatorname{Ker} f$ and $H(\mathbf{q}) = f^{-1}(C)$,

where C is the centre of $GL_n(A/q)$. (By definition

$$H(q) = \{X \in G : X \equiv xI \pmod{q}, \text{ where } x \in A\} \text{ is central } (\text{mod } q)\}$$

and H(A) = G(A) = G.)

Let Δ be the subgroup of G generated by all the elementary matrices $I + aE_{ij}$, $a \in A$, $i \neq j$, $1 \leq i, j \leq n$, and let $\Delta(\mathbf{q})$ be the normal subgroup of Δ generated by the q-elementary matrices, $I + qE_{ij}$, $q \in \mathbf{q}$, $i \neq j$. (By definition $\Delta = \Delta(A)$.) Finally, if H, K are subgroups of G, [H, K] is the subgroup generated by commutators $[h, k] = h^{-1}k^{-1}hk$, $h \in H$, $k \in K$.

Our starting point is the following:

THEOREM 1. Assume that either

(a) A satisfies $SR_{n}(A)$, for some $t \ge 2$, and $n \ge \max(t, 3)$, or

(b) A is finitely generated as a module over its centre and $n \ge 3$.

If E is a subgroup of G normalized by Δ , then for some unique ideal Θ (called the level of E),

$$\Delta(\mathbf{e}) \leq E \leq H(\mathbf{e}).$$

Parts (a) and (b) are due to Bass [1, p. 240] and Vaserstein [11], respectively. Many special cases of this result have appeared over the last twenty years. Among the most important are those due to Brenner [3] ($A = \mathbb{Z}, n \ge 3$) and Golubchik [4] (A commutative, $n \ge 3$). The classical example of the modular group shows that the restriction $n \ge 3$ is necessary. It is known [5] that, if N is a normal subgroup of finite index in $GL_2(\mathbb{Z})$, then, with finitely many excep-

• 1984 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received November 30, 1981.