THE CLASSIFYING SPACE OF SMOOTH FOLIATIONS

BY
Steven Hurder ${ }^{1}$

One of the most striking examples of a foliated manifold was constructed by Thurston [24] on the 3-sphere. He exhibited a family of codimension-one foliations on S^{3} for which the Godbillon-Vey class takes on a continuous range of values. In subsequent explicit constructions of foliations with non-zero secondary classes, almost always a discrete group Γ is given which acts on S^{q} and the foliation is defined on the quotient $M^{n}=B \times{ }_{\Gamma} S^{q}$, where Γ acts freely on B [1], [5], [6], [13], [19], [21]. The quotient space M is very complicated as a manifold, and it is natural to ask whether there exist codimension q foliations on spheres S^{n} with non-vanishing secondary classes for $q>1$ (Haefliger's problem 2, p. 241 of [22].) One of the aims of this paper is to answer this question affirmatively (Corollary 4.6). For $n=2 q+1$, if S^{n} admits a rank q subbundle $Q \subseteq T S^{n}$ then there exists a family of codimension q foliations on S^{n} for which a set of secondary classes takes on a continuous range of values. Other values of $n>2 q$ also work, and S^{n} can be replaced with any closed, oriented n-manifold M which admits a q-frame field $Q \subseteq T M$. This is a consequence of Thurston's realization theorem [25], and the following two theorems which we will prove.

For each $q>1$ a sequence of non-negative integers $\left\{v_{q, n}\right\}$ is defined in $\S 2.8$ with the properties:
(1) For $q=2, \lim _{k \rightarrow \infty} v_{2,4 k+1}=\infty$ and $v_{2,4 k+1}>0$ for all $k>0$.
(2) For $q=3, \lim _{k \rightarrow \infty} v_{3,3 k+1}=\infty$ and $v_{3,3 k+1}>0$ for all $k>1$.
(3) For $q>3, \lim _{n \rightarrow \infty} v_{q, n}=\infty$.

We denote by $B \Gamma_{q}$ Haefliger's classifying space of codimension q smooth foliations. The integral homotopy groups of $B \Gamma_{q}$ are denoted $\pi_{*}\left(B \Gamma_{q}\right)$.

Theorem 1. For each $q>1$ and $n>2 q$ there is an epimorphism of abelian groups

$$
\pi_{n}\left(B \Gamma_{q}\right) \rightarrow \mathbf{R}^{v_{q, n}} .
$$

[^0]
[^0]: Received October 29, 1982.
 ${ }^{1}$ Supported in part by a grant from the National Science Foundation.

