M-IDEALS OF L^{∞}/H^{∞} AND SUPPORT SETS

BY

RAHMAN M. YOUNIS¹

1. Introduction

Let L^{∞} be the usual space of bounded measurable functions on the unit circle T. Let H^{∞} denote the subalgebra of L^{∞} consisting of functions on T that are radial limits of bounded analytic functions of the open unit disk, and $H^{\infty} + C$ denotes the closed linear span of H^{∞} and C, where C is the space of continuous functions on T. The norm of an L^{∞} -function f is denoted by ||f||. If $H^{\infty} \subseteq A \subseteq L^{\infty}$, we let M(A) denote the maximal ideal space of A. Elements of A may be identified with functions on M(A). Such an algebra is commonly called a Douglas algebra.

If E is a generalized peak set for H^{∞} , we define

$$H_E^{\infty} = \left\{ f \in L^{\infty} \colon f_{|E} \in H_{|E}^{\infty} \right\}.$$

The algebra $(H^{\infty} + C)_E$ is defined analogously. If E is a generalized peak set for $H^{\infty} + C$, then $(H^{\infty} + C)_E$ is closed. These algebras appeared in [16] and [11]. The reader is referred to [5], [3] and [9] for the theory of uniform algebras and to [6] and [13] for the general basic facts about H^{∞} .

If A is a closed subalgebra of C(X), X is a compact space, then the essential set of A is the zero set of the largest closed ideal of C(X) which lies in A. Equivalently, it is equal to $\bigcup \text{supp } \mu$, where $\mu \in A^{\perp}$.

The concept of *M*-ideals has been used by the authors of [10], [11], [16] and [17] in order to prove that L^{∞}/A is an *M*-ideal in L^{∞}/H^{∞} for a certain Douglas algebra *A*. A subspace *K* of a Banach space *Y* is called an *M*-ideal of there exists an *L*-projection *P* from *Y*^{*} onto K^{\perp} , that is, *P* is a projection such that ||y|| = ||Py|| + ||y - Py|| for all $y \in Y^*$. If *K* is an *M*-ideal of *Y* and if $x \in Y$ then there exists $m \in K$ such that dist(x, K) = ||x - m|| [1]. If $x \in Y \setminus K$ then

$$span\{m: m \in K, dist(x, K) = ||x - m||\} = K$$
 [7].

© 1985 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received October 14, 1982.

¹Part of this work was done while the author was a visitor at the University of California, Los Angeles.